2)координаты точек пересечения графика функции с осями координат
1)Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение, если левая часть будет равна правой, значит, точка принадлежит графику и наоборот.
A(2;2)
y=x+4
2=2+4
2≠6, не принадлежит
В(-1;3)
3= -1+4
3=3, принадлежит
С(10;-7)
-7=10+4
-7≠14, не принадлежит.
2)График пересекает ось Оу при х=0:
х=0
у=0+4
Координаты точки пересечения графиком оси Оу (0; 4)
график пересекает ось Ох при у=0:
у=0
0=х+4
-х=4
х= -4
Координаты точки пересечения графиком оси Ох (-4; 0)
2. Постройте график функции y = 2x +3. Пользуясь графиком, найдите:
1) значение функции, если значение аргумента равно 1; −1; 0;
2) значение аргумента, при котором значение функции равно 0; 5;
3) значения аргумента, при которых функция принимает отрицательные значения.
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
y = 2x +3
Таблица:
х -1 0 1
у 1 3 5
1)Чтобы определить значение у, нужно известное значение х подставить в уравнение и вычислить у:
а)х=1
у=2*1+3=5 у=5 при х=1
б)х= -1
у=2*(-1)+3=1 у=1 при х= -1
в)х=0
у=2*0+3=3 у=3 при х=0
2)Чтобы определить значение х, нужно известное значение у подставить в уравнение и вычислить х:
а)у=0
0=2х+3
-2х=3
2х= -3
х= -1,5 при х= -1,5 у=0
б)у=5
5=2х+3
-2х=3-5
-2х= -2
х=1 при х=1 у=5
3)Согласно графика, у<0 при х∈(- ∞, -1,5)
Функция принимает отрицательные значения при х от -1,5 до минус бесконечности.
3. При каком значении k график функции y = kx − 15 проходит через точку C (−2; −3)?
Нужно подставить в уравнение известные значения х и у (координаты точки С) и вычислить k:
y = kx − 15 C (−2; −3)
-3=k*(-2)-15
-3= -2k-15
2k= -15+3
2k= -12
k= -6
4. При каком значении переменной x функции у= 2x − 6 и у = −0,4x + 6 принимают равные значения? Постройте на одной координатной плоскости графики функций .
Нужно приравнять правые части уравнений (левые по условию равны):
2x−6=−0,4x+6
2х+0,4х=6+6
2,4х=12
х=12/2,4=5 при х=5 (у равны 4)
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Объяснение:
1. Линейная функция задана формулой y=x+4
не выполняя построения, найдите:
1)принадлежность точек графику A(2;2) В(-1;3) С(10;-7)
2)координаты точек пересечения графика функции с осями координат
1)Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение, если левая часть будет равна правой, значит, точка принадлежит графику и наоборот.
A(2;2)
y=x+4
2=2+4
2≠6, не принадлежит
В(-1;3)
3= -1+4
3=3, принадлежит
С(10;-7)
-7=10+4
-7≠14, не принадлежит.
2)График пересекает ось Оу при х=0:
х=0
у=0+4
Координаты точки пересечения графиком оси Оу (0; 4)
график пересекает ось Ох при у=0:
у=0
0=х+4
-х=4
х= -4
Координаты точки пересечения графиком оси Ох (-4; 0)
2. Постройте график функции y = 2x +3. Пользуясь графиком, найдите:
1) значение функции, если значение аргумента равно 1; −1; 0;
2) значение аргумента, при котором значение функции равно 0; 5;
3) значения аргумента, при которых функция принимает отрицательные значения.
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
y = 2x +3
Таблица:
х -1 0 1
у 1 3 5
1)Чтобы определить значение у, нужно известное значение х подставить в уравнение и вычислить у:
а)х=1
у=2*1+3=5 у=5 при х=1
б)х= -1
у=2*(-1)+3=1 у=1 при х= -1
в)х=0
у=2*0+3=3 у=3 при х=0
2)Чтобы определить значение х, нужно известное значение у подставить в уравнение и вычислить х:
а)у=0
0=2х+3
-2х=3
2х= -3
х= -1,5 при х= -1,5 у=0
б)у=5
5=2х+3
-2х=3-5
-2х= -2
х=1 при х=1 у=5
3)Согласно графика, у<0 при х∈(- ∞, -1,5)
Функция принимает отрицательные значения при х от -1,5 до минус бесконечности.
3. При каком значении k график функции y = kx − 15 проходит через точку C (−2; −3)?
Нужно подставить в уравнение известные значения х и у (координаты точки С) и вычислить k:
y = kx − 15 C (−2; −3)
-3=k*(-2)-15
-3= -2k-15
2k= -15+3
2k= -12
k= -6
4. При каком значении переменной x функции у= 2x − 6 и у = −0,4x + 6 принимают равные значения? Постройте на одной координатной плоскости графики функций .
Нужно приравнять правые части уравнений (левые по условию равны):
2x−6=−0,4x+6
2х+0,4х=6+6
2,4х=12
х=12/2,4=5 при х=5 (у равны 4)
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
у= 2x − 6 у = −0,4x + 6
Таблицы:
х -1 0 1 х -5 0 5
у -8 -6 -4 у 8 6 4
Постройте график функции у=х²+4х-2
Уравнение графика параболы со смещённым центром, ветви параболы направлены вверх.
Найдём координаты вершины параболы (для построения):
х₀= -b/2a= -4/2= -2
y₀= (-2)²+ 4*(-2) -2 =4 -8 -2= -6
Координаты вершины параболы (-2; -6)
Нужны дополнительные точки для построения графика. Придаём значения х, получаем значения у, составляем таблицу:
х -5 -4 -3 -2 -1 0 1
у 3 -2 -5 -6 -5 -2 3
По найденным точкам можно построить график параболы.
а)Подставляем в уравнение значение х=1,5 получаем у:
у=х²+4х-2
у= (1,5)² + 4*1,5 -2= 2,25+6-2= 6,25
б)Наоборот, заменяем у на 4:
у=х²+4х-2
х²+4х-2=4
х²+4х-6=0, квадратное уравнение, ищем корни:
х₁,₂=(-4±√16+24)2
х₁,₂=(-4±√40)2
х₁,₂=(-4±6,3)2
х₁=5,15
х₂=1,15
в)у=х²+4х-2
y <0
х²+4х-2<0
Решаем, как квадратное уравнение:
х²+4х-2=0
х₁,₂=(-4±√16+8)2
х₁,₂=(-4±√24)2
х₁,₂=(-4±4,9)2
х₁= -4,45
х₂= 0,45
у(х) <0 при -4,45 < х < 0,45
г)Функция возрастает на промежутке ( -2; ∞)