применять схему Горнера для нахождения корней многочлена разделить два икс в четвертой степени минус девять икс в третий степениплюс пять икс во второй степени минус три икс минус икс минус четыре на икс минус четыре
По признаку возрастания и убывания функции на интервале: если производная функции y=f(x) положительна для любого x из интервала X, то функция возрастает на X; если производная функции y=f(x) отрицательна для любого x из интервала X, то функция убывает на X.
Найдем производную данной функции
найдем точки экстремума, точки в которых производная равна нулю
отметим точки на числовой прямой и проверим знак производной на промежутках
___+____-______+__ 0 2
Значит на промежутках (-оо;0) ∪ (2;+оо) функция возрастает на промежутке (0;2) функция убывает
точки х=0 точка минимума, х=2 точка максимума
Найти наибольшее и наименьшее значение функции на отрезке [-2; 1].
Заметим, что х=2 точка максимума не входит в данный промежуток, а х=0 принадлежит данному промежутку
Проверим значение функции в точке х=0 и на концах отрезка
Значит наибольшее значение функции на отрезке [-2;1] в точке х=0 и у(0)=1
значит наименьшее значение функции на отрезке [-2;1] в точке х=-2 и у(-2)= -19
2. Напишите уравнение к касательной к графику функции f(x)=x^3-3x^2+2x+4 в точке с абсциссой x0=1.
Дана функция
найти промежутки возрастания и убывания
По признаку возрастания и убывания функции на интервале:
если производная функции y=f(x) положительна для любого x из интервала X, то функция возрастает на X;
если производная функции y=f(x) отрицательна для любого x из интервала X, то функция убывает на X.
Найдем производную данной функции
найдем точки экстремума, точки в которых производная равна нулю
отметим точки на числовой прямой и проверим знак производной на промежутках
___+____-______+__
0 2
Значит на промежутках (-оо;0) ∪ (2;+оо) функция возрастает
на промежутке (0;2) функция убывает
точки х=0 точка минимума, х=2 точка максимума
Найти наибольшее и наименьшее значение функции на отрезке [-2; 1].
Заметим, что х=2 точка максимума не входит в данный промежуток,
а х=0 принадлежит данному промежутку
Проверим значение функции в точке х=0 и на концах отрезка
Значит наибольшее значение функции на отрезке [-2;1]
в точке х=0 и у(0)=1
значит наименьшее значение функции на отрезке [-2;1]
в точке х=-2 и у(-2)= -19
2. Напишите уравнение к касательной к графику функции
f(x)=x^3-3x^2+2x+4 в точке с абсциссой x0=1.
Уравнение касательной имеет вид
найдем производную данной функции
найдем значение функции и производной в точке х=1
подставим значения в уравнение касательной
4-x²≥0⇒(2-x)(2+x)≥0
x=2 U x=-2
_ + _
-2 2
x∈[-2;2]
2
График во вложении
1)x∈(-∞;0) U (0;∞)
2) (1/7)^-5 < 1; (3,2)^-5 > (3 √2)^-5
3
1)√1-x=3
1-x=9
x=1-9=-8
2)x+2≥0⇒x≥-2 U 3-x≥0⇒x≤3⇒x∈[-2;3]
x+2=3-x
x+x=3-2
2x=1
x=0,5
3)x+1≥0⇒x≥-1
1-x=x²+2x+1
x²+3x=0
x(x+3)=0
x=0
x=-3-не удов усл
4)2x+5≥0⇒x≥-2,5 U x+6≥0⇒x≥-6⇒x≥-2,5
2x+5-2√(2x²+17x+6) +x+6=1
2√(2x²+17x+6)=3x+10
4(2x²+17x+6)=9x²+60x+100
9x²+60x+100-8x²-68x-24=0
x²-8x+76=0
D=64-304=-240<0
нет решения