(1) 1/5 в степени х+4 = (1/5) в -2 степени х+4= -2, х= -8 2) 1/2 в степени х-4 = (1/2) в -6 степени х-4=-6, х= -2 3) 1/3 = (1/3) в степени -10х+3 1=-10х+3, х= 1/5 4) 4 в степени 5х-10 = 4 в степени 5 5х-10=1, х= 2,2 5) 0,1 в степени х-5 = 0,1 в степени -2 х-5=-2, х= 3 6) 1/5 в степени 2х-2 = (1/5) в степени -4 2х-2=-4, х= -1 7) 1/4 в степени х-4 = (1/4) в степени -3х х-4=-3х, х=1 8) 1/11 в степени х-5 = (1/11) в степени -2 х-5=-2, х=3 9) 7 в степени 2х-2 = 7 в степени -1 2х-2=-1, х= 0,5 10) 1/4 в степени 2х-2 = 1/4 в степени -4 2х-2=-4, х=-1
х+4= -2, х= -8
2) 1/2 в степени х-4 = (1/2) в -6 степени
х-4=-6, х= -2
3) 1/3 = (1/3) в степени -10х+3
1=-10х+3, х= 1/5
4) 4 в степени 5х-10 = 4 в степени 5
5х-10=1, х= 2,2
5) 0,1 в степени х-5 = 0,1 в степени -2
х-5=-2, х= 3
6) 1/5 в степени 2х-2 = (1/5) в степени -4
2х-2=-4, х= -1
7) 1/4 в степени х-4 = (1/4) в степени -3х
х-4=-3х, х=1
8) 1/11 в степени х-5 = (1/11) в степени -2
х-5=-2, х=3
9) 7 в степени 2х-2 = 7 в степени -1
2х-2=-1, х= 0,5
10) 1/4 в степени 2х-2 = 1/4 в степени -4
2х-2=-4, х=-1
1)ΔABD Ф
АС² = AD² + CD²=a²+a² = 2a²
AC = a√2
CO=a√2/2
2) ΔSCO
SC² = SO² + CO²
a² = SO² + 2a²/4
SO² = a² - 2a²/4= 2a²/4
SO = a√2/2
CO = SO= OD=OA=OB
ΔSOC,ΔSOD,ΔSOA,ΔSOB - равнобедренные, прямоугольные
3)SO продолжим до пересечения со сферой. Появилась точка S1
4)∠SCS1 - вписанный . Он опирается на диаметр, значит,∠SCS1 = 90°
5) Δ SCS1 - прямоугольный с углом CSO = 45°⇒
∠CS1O = 45°⇒ΔSCS1 - равнобедренный⇒SC= S1C⇒
⇒CO - высота в нём, биссектриса и медиана⇒О - середина SS1⇒O- центр сферы.