Приведем очень простой пример, показывающий, как вычисляются дисперсия и стандартное отклонение. Допустим, что вам представилась возможность сыграть в следующую игру. Сначала вы инвестируете 100 уел. ед. Затем подбрасываете две монеты. Если выпадет “орел” — прибавляете к первоначальной сумме 20%, если “решка” — отнимаете 10%. Очевидно, существует четыре вероятных результата: “орел” + “орел”: +40%;
“орел” + “решка”: +10%;
“решка” + “орел”: +10%;
“решка” + “решка”: -20%.
Составим таблицу распределения частот:
X
+40
+10
-20
wt.
1
1
1
4
2
4
Относительная частота равна 1 к 4 (или 0,25), что вы получите 40%, равна 2 к 4 (или 0,5), что вы получите 10%, и 1 к 4 (или 0,25), что вы потеряете 20%. Ожидаемая доходность игры, следовательно, представляет собой средневзвешенную значений фактической доходности
Вообще, исходя из определений, критическая точка для функции одного переменного - это точка, в которой производная функции равна 0.
Далее, для пункта 1 нам нужно, чтобы исходная функция убывала на (-∞;+∞), для этого производная должна быть неположительной на этом же интервале и в одной точке должна быть равной нулю.
График производной - парабола (за исключением одного случая), причем её направление зависит от выражения с параметром. Нам нужно, чтобы парабола в одной точке касалась оси ОХ, а вся остальная парабола находилась ниже оси ОХ. То есть, её ветви должны быть направлены вниз.
Но для начала рассмотрим тот случай, когда a=-1 и это не парабола.
. Видно, что исходная функция будет и возрастать, и убывать, так что a=-1 не подходит нам.
Вернемся к параболе. Направление ветвей вниз - ограничение
Условие, когда один корень - D=0 в уравнении y'=0
Тогда имеем два значения a:
Учитывая ограничение a<-1 (корень из 6 больше 2), берем только a2.
Теперь к пункту 2, когда критических точек нет. На самом деле, всю работу мы почти сделали. Ещё раз выпишем производную
Теперь нам надо, чтобы даже касаний оси ОХ этой параболой не было. Тогда получается необходимость отсутствия корней уравнения y'=0. Этот случай при D<0 (корней нет, а сама парабола находится ниже оси ОХ, главное будет потом учесть ограничение на направление ветвей вниз - a<-1)
Чтобы решить это неравенство, нужно исследовать D как функцию, найти её нули и методом интервалов решить неравенство. Но нули её мы как раз нашли. Это
Методом интервалов получим левый крайний и правый крайний промежуток a∈∪
Но теперь надо учесть ограничение a<-1. Тогда правый промежуток нам не подойдет.
a∈
Как-то так. Если в задаче необходимо объединить решения пункта 1 и пункта 2, то ответ будет выглядеть так: a∈
Приведем очень простой пример, показывающий, как вычисляются дисперсия и стандартное отклонение. Допустим, что вам представилась возможность сыграть в следующую игру. Сначала вы инвестируете 100 уел. ед. Затем подбрасываете две монеты. Если выпадет “орел” — прибавляете к первоначальной сумме 20%, если “решка” — отнимаете 10%. Очевидно, существует четыре вероятных результата: “орел” + “орел”: +40%;
“орел” + “решка”: +10%;
“решка” + “орел”: +10%;
“решка” + “решка”: -20%.
Составим таблицу распределения частот:
X
+40
+10
-20
wt.
1
1
1
4
2
4
Относительная частота равна 1 к 4 (или 0,25), что вы получите 40%, равна 2 к 4 (или 0,5), что вы получите 10%, и 1 к 4 (или 0,25), что вы потеряете 20%. Ожидаемая доходность игры, следовательно, представляет собой средневзвешенную значений фактической доходности
Объяснение:
Вообще, исходя из определений, критическая точка для функции одного переменного - это точка, в которой производная функции равна 0.
Далее, для пункта 1 нам нужно, чтобы исходная функция убывала на (-∞;+∞), для этого производная должна быть неположительной на этом же интервале и в одной точке должна быть равной нулю.
График производной - парабола (за исключением одного случая), причем её направление зависит от выражения с параметром. Нам нужно, чтобы парабола в одной точке касалась оси ОХ, а вся остальная парабола находилась ниже оси ОХ. То есть, её ветви должны быть направлены вниз.
Но для начала рассмотрим тот случай, когда a=-1 и это не парабола.
. Видно, что исходная функция будет и возрастать, и убывать, так что a=-1 не подходит нам.
Вернемся к параболе. Направление ветвей вниз - ограничение
Условие, когда один корень - D=0 в уравнении y'=0
Тогда имеем два значения a:
Учитывая ограничение a<-1 (корень из 6 больше 2), берем только a2.
Теперь к пункту 2, когда критических точек нет. На самом деле, всю работу мы почти сделали. Ещё раз выпишем производную
Теперь нам надо, чтобы даже касаний оси ОХ этой параболой не было. Тогда получается необходимость отсутствия корней уравнения y'=0. Этот случай при D<0 (корней нет, а сама парабола находится ниже оси ОХ, главное будет потом учесть ограничение на направление ветвей вниз - a<-1)
Чтобы решить это неравенство, нужно исследовать D как функцию, найти её нули и методом интервалов решить неравенство. Но нули её мы как раз нашли. Это
Методом интервалов получим левый крайний и правый крайний промежуток a∈∪
Но теперь надо учесть ограничение a<-1. Тогда правый промежуток нам не подойдет.
a∈
Как-то так. Если в задаче необходимо объединить решения пункта 1 и пункта 2, то ответ будет выглядеть так: a∈