1)=8а²(в²-9с²)=8а²(в-3с)(в+3с).
2)=2(х²-12ху+36у²)=2(х-6у)².
3)=-2а(4а4-4а²+1)= -2а(2а²-1)².
4)=5(а³-8в6)=5(а³-(2в²)³)=5(а-2в²)(а²+2ав²+4в4)
5)=(а³+а²)-(ав-а²в)=а²(а+1)-ав(1+а)=(а+1)(а²-ав)=а(а+1)(а-в)
6)=с4(а-1)-с²(а-1)=(а-1)(с4-с²)=с²(а-1)(с²-1)=с²(а-1)(с-1)(с+1).
1)=(х-у)²-7²=(х-у-7)(х-у+7)
2)=а²-(3в-с)²=(а+3в-с)(а-3в+с)
3)=(в³)²-(2в²-3)²=(в³+2в²-3)(в³-2в²+3).
4)=(m³+3³n³)+(m+3n)²=(m+3n)(m²-3mn+9n²)+(m+3n)²=(m+3n)(m²-3mn+9n²+m+3n).
5)=x²-y²+2x+4y-3=(x²+2x+1)-(y²-4y+4)=(x+1)²-(y-2)²=(x+y-1)(x-y+3).
первый перепишем уравнение в виде
x^2-(a+1)x+a=0
по теореме Виета , имеем:
(x1)+(x2)=a+1
(x1)(x2)=a
(x1)^2+(x2)^2=(x1+x2)^2-2(x1)(x2)=(a+1)^2-2a=a^2+2a+1-2a=a^2+1
ответ: a^2+1
второй разложим на множители
x(x-a)-1(x-a)=0
(x-1)(x-a)=0
октуда видно что один корень даного уравнения равен 1, второй равен а
значит сумма квадратов корней данного уравнения равна 1^2+a^2=a^2+1
овтет: a^2+1
(можно как вариант еще:
найти корни через дискриминант, а потом опять таки зная корни посчитать сумму их квадратов)
1)=8а²(в²-9с²)=8а²(в-3с)(в+3с).
2)=2(х²-12ху+36у²)=2(х-6у)².
3)=-2а(4а4-4а²+1)= -2а(2а²-1)².
4)=5(а³-8в6)=5(а³-(2в²)³)=5(а-2в²)(а²+2ав²+4в4)
5)=(а³+а²)-(ав-а²в)=а²(а+1)-ав(1+а)=(а+1)(а²-ав)=а(а+1)(а-в)
6)=с4(а-1)-с²(а-1)=(а-1)(с4-с²)=с²(а-1)(с²-1)=с²(а-1)(с-1)(с+1).
1)=(х-у)²-7²=(х-у-7)(х-у+7)
2)=а²-(3в-с)²=(а+3в-с)(а-3в+с)
3)=(в³)²-(2в²-3)²=(в³+2в²-3)(в³-2в²+3).
4)=(m³+3³n³)+(m+3n)²=(m+3n)(m²-3mn+9n²)+(m+3n)²=(m+3n)(m²-3mn+9n²+m+3n).
5)=x²-y²+2x+4y-3=(x²+2x+1)-(y²-4y+4)=(x+1)²-(y-2)²=(x+y-1)(x-y+3).
первый перепишем уравнение в виде
x^2-(a+1)x+a=0
по теореме Виета , имеем:
(x1)+(x2)=a+1
(x1)(x2)=a
(x1)^2+(x2)^2=(x1+x2)^2-2(x1)(x2)=(a+1)^2-2a=a^2+2a+1-2a=a^2+1
ответ: a^2+1
второй разложим на множители
x(x-a)-1(x-a)=0
(x-1)(x-a)=0
октуда видно что один корень даного уравнения равен 1, второй равен а
значит сумма квадратов корней данного уравнения равна 1^2+a^2=a^2+1
овтет: a^2+1
(можно как вариант еще:
найти корни через дискриминант, а потом опять таки зная корни посчитать сумму их квадратов)