y = x³ - 3x² + 3x - 2,5
Найдём производную :
y' = (x³)' - 3(x²)' + 3(x)' - 2,5' = 3x² - 6x + 3
Приравняем производную к нулю, найдём критические точки :
3x² - 6x + 3 = 0
x² - 2x + 1 = 0
(x - 1)² = 0 ⇒ x = 1
Эта критическая точка принадлежит заданному отрезку. Найдём значения функции в критической точке и на концах отрезка и выберем из них наибольшее .
y(1) = 1³ - 3 * 1² + 3 * 1 - 2,5 = 1 - 3 + 3 - 2,5 = - 1,5
y(- 1) = (-1)³ - 3 * (- 1)² + 3 * (- 1) - 2,5 = - 1 - 3 - 3 - 2,5 = - 9,5
y(2) = 2³ - 3 * 2² + 3 * 2 - 2,5 = 8 - 12 + 6 - 2,5 = - 0,5
ответ : наибольшее значение функции равно - 0,5
Пусть начальная скорость велосипедиста равна х, тогда его новая скорость (х + 2).
Он проехал 10км за время, равное 10:х. Остановка 10мин = 1/6часа.С новой скоростью он ехал 24 - 10 = 14 км и проехал за время 14:(х + 2).
Если бы он ехал с начальной скоростью, то он проехал бы весь путь за время 24:х.
Составляем уравнение:
10:х + 14:(х + 2) + 1/6 = 24:х
14:х - 14:(х + 2) = 1/6
14·6·(х + 2) - 14·6·х = х·(х + 2)
х² + 2х - 168 = 0
D = 4 + 4·168 = 676
√D = 26
х₁ = (-2 - 26):2 = -14 (в данной задаче скорость не может быть отрицательной)
х₂ =(-2 + 26):2 = 12
ответ: 12км/ч
y = x³ - 3x² + 3x - 2,5
Найдём производную :
y' = (x³)' - 3(x²)' + 3(x)' - 2,5' = 3x² - 6x + 3
Приравняем производную к нулю, найдём критические точки :
3x² - 6x + 3 = 0
x² - 2x + 1 = 0
(x - 1)² = 0 ⇒ x = 1
Эта критическая точка принадлежит заданному отрезку. Найдём значения функции в критической точке и на концах отрезка и выберем из них наибольшее .
y(1) = 1³ - 3 * 1² + 3 * 1 - 2,5 = 1 - 3 + 3 - 2,5 = - 1,5
y(- 1) = (-1)³ - 3 * (- 1)² + 3 * (- 1) - 2,5 = - 1 - 3 - 3 - 2,5 = - 9,5
y(2) = 2³ - 3 * 2² + 3 * 2 - 2,5 = 8 - 12 + 6 - 2,5 = - 0,5
ответ : наибольшее значение функции равно - 0,5
Пусть начальная скорость велосипедиста равна х, тогда его новая скорость (х + 2).
Он проехал 10км за время, равное 10:х. Остановка 10мин = 1/6часа.С новой скоростью он ехал 24 - 10 = 14 км и проехал за время 14:(х + 2).
Если бы он ехал с начальной скоростью, то он проехал бы весь путь за время 24:х.
Составляем уравнение:
10:х + 14:(х + 2) + 1/6 = 24:х
14:х - 14:(х + 2) = 1/6
14·6·(х + 2) - 14·6·х = х·(х + 2)
х² + 2х - 168 = 0
D = 4 + 4·168 = 676
√D = 26
х₁ = (-2 - 26):2 = -14 (в данной задаче скорость не может быть отрицательной)
х₂ =(-2 + 26):2 = 12
ответ: 12км/ч