В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
lololololololololool
lololololololololool
23.04.2020 17:44 •  Алгебра

Приведите числа к стандартному виду
0.000489
5450
0.056​

Показать ответ
Ответ:
PollusikRO
PollusikRO
19.01.2023 23:52

1) 5sinx =3  ⇔ sinx = 0,6 ⇒ x = (-1)ⁿarcsin(0,6) +πn , n ∈ ℤ .

2)  1 - 2sinx = 0⇔ sinx = 1/2 ⇒ x = (-1)ⁿπ/6  +πn , n ∈ ℤ .

3) 4sinx +5 =0 ⇔ sinx = -1,25  ⇒ x ∈ ∅ . не имеет решения | sinx | ≤ 1

4)  2sin(3x +π/3) + √3 =0 ⇔sin(3x +π/3) = -(√3) /2  ⇒

   3x+ π/3 = (-1) ⁿ⁻¹ π/3 + πn   ⇔ (совокупность _ИЛИ  )

   [  3x+ π/3 =  - π/3 + π*2k  ; 3x+ π/3 = π/3 + π*(2k+1) , k ∈ ℤ  ⇔

  [  x =  - 2π/9 + (2π/3)k  ;   x=  (π/3)(2k+1)   , k ∈ ℤ  

5) 12sin(x/4 -π/6) -12 =0 ⇔sin(x/4 -π/6) =1 ⇒ x/4 -π/6 =π/2 +2πk ,k ∈ ℤ ⇔

   x = 8π/3 +8πk ,k ∈ ℤ

6) (2sin4x - 4)(2sinx+1) =0 ⇔ (sin4x -2)(sinx +1/2)  = 0  ||sin4x ≠2 || ⇔

  sinx +1/2 =0 ⇔sinx = -(1/2) ⇒ x =(-1) ⁿ⁻¹ *(π/6) + πn   , n ∈ ℤ

7) sin(x/2)cos(x/3) -cos(x/2)sin(x/3) =0⇔sin(x/2 - x/3) =0 ⇔sin(x/6) =0 ⇒

  x/6 =πn , n ∈ ℤ   ≡   x  = 6πn , n ∈ ℤ

8) 4sin3x*cos3x - √2 =0 ⇔ 2sin(2*3x) - √2 =0 ⇔sin(6x) =(√2)/2 ⇔

   6x =π/4 +πn , n∈ℤ ⇔  x = π/24 +(π/4)*n , n∈ℤ  

0,0(0 оценок)
Ответ:
Merymkrtchyan
Merymkrtchyan
29.01.2023 14:57

Если бы все эти числа были одинаковыми, все попарные суммы были бы равны, что противоречит условию.

Если бы среди этих чисел были бы только два различных числа a<b, а остальные были бы равны одному или другому, то мы могли бы получить три различные суммы при условии, что оба эти числа встречаются хотя бы дважды. Тогда мы получили бы суммы a+a=2a (четное число), a+b и b+b=2b (тоже четное число). Но по условию только одна сумма четная, поэтому этот случай мы отвергаем.

Если среди этих чисел три различных числа a<b<c, то два оставшихся обязаны совпасть с одним из этих чисел. В противном случае, если бы, скажем, числа a и b встречались дважды, то как и в предыдущем случае мы получили бы две четные суммы, что противоречило бы условию. Если бы мы имели ситуацию a=a=a<b<c, то мы могли бы составить четыре различные суммы  a+a<a+b<a+c<b+c, что также противоречит условию. Невозможна и ситуация a<b<c=c=c из-за наличия четырех различных сумм a+b<a+c<b+c<c+c. Остается случай a<b=b=b<c. Мы снова имеем четыре суммы a+b, a+c, b+b, b+c, причем a+b<a+c<b+c, a+b<b+b<b+c. Вывод: для того, чтобы мы имели только три различные суммы, должно выполняться равенство a+c=b+b. Так как b+b=2b - четное число, то 2b=40, b=20. Но с другой стороны, 40 - это минимальная сумма, значит именно a+b должно равняться 40. Это противоречие доказывает, что и эта ситуация невозможна.

Если бы среди этих чисел было 4 или пять различных, то мы имели бы больше трех различных сумм. Например, если a<b<c<d, то

a+b<a+c<a+d<b+d<c+d, то есть имеется как минимум 5 различных сумм.

Вывод: условия задачи внутренне противоречивы.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота