#3/ 1.Ма́трица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля (например, целых, действительных или комплексныхчисел), которая представляет собой совокупность строк и столбцов, на пересечении которых находятся её элементы. Количество строк и столбцов матрицы задают размер матрицы/. Виды: Виды матриц: квадратная, студенчатая, нулевая, дигональная, единичная, скалярная, треугольная и другие 2. Для матрицы определены следующие алгебраические операции:сложение матриц, имеющих один и тот же размер;умножение матриц подходящего размера (матрицу, имеющую n столбцов, можно умножить справа на матрицу, имеющую n строк);в том числе умножение на матрицу вектора (по обычному правилу матричного умножения; вектор является в этом смысле частным случаем матрицы);умножение матрицы на элемент основного кольца или поля (то есть скаляр).
у³ - 4 + 2у - 2у² = у²(у - 2) + 2(у - 2) = (у² + 2)(у - 2)
7с² - с - с³ + 7 = с²(7 - с) + (7 - с) = (с² + 1)(7 - с)
х³ + 28 - 14х² - 2х = х(х² - 2) - 14(х² - 2) = (х - 14)(х² - 2)
16ab² + 5b²c + 10c³ + 32ac² = 16a(b² + 2c²) + 5c(b² + 2c²) = (16a + 5c)(b² + 2c²)
20n² - 35a - 14an + 50n = 10n(2n + 5) - 7a(2n + 5) = (10n - 7a)(2n + 5)
40a³bc + 21bc - 56ac² - 15a²b² = 5a²b(8ac - 3b) - 7c(8ac - 3b) = (5a²b - 7c)(8ac - 3b)
16xy² - 5y²z - 10z³ + 32xz² = 16x(y² + 2z²) - 5z(y² + 2z²) = (16x - 5z)(y² + 2z²)
2. Для матрицы определены следующие алгебраические операции:сложение матриц, имеющих один и тот же размер;умножение матриц подходящего размера (матрицу, имеющую n столбцов, можно умножить справа на матрицу, имеющую n строк);в том числе умножение на матрицу вектора (по обычному правилу матричного умножения; вектор является в этом смысле частным случаем матрицы);умножение матрицы на элемент основного кольца или поля (то есть скаляр).