Знаменатель дроби показывает на сколько ровных долей делят, а числитель-сколько таких долей взято.. Чтобы прибавить, или отнять дроби с разными знаменателями, мы приводим к наименьшему общему знаменателю, и прибавляем(или отнимаем) Если числитель и знаменатель дроби умножить или разделить на одно и тоже натуральное число, то получится равная ей дробь. Это значит разделить и числитель и знаменатель на одно и то же число, не равное нулю. Например дробь 2/4 сокращаем на два:1/2.5/10 сокращаем на 5=1/2 незнаю, наверное до бесконечности Дробь называют несократимой тогда, когда сократить эту дробь невозможно...
1) 9^n - 25^n = 3^(2n) - 5^(2n) = (3^n - 5^n)(3^n + 5^n) 2) докажите, что число n³ - n делится на 6 Решение при n = 2, имеем 8 - 2 = 6 утверждение верно. Полагаем, что оно верно при n = m. Покажем, что оно выполняется и при n = m + 1 (m+1)² - (m+1)=m³ - m + 3m² + 3m Первые два слагаемых делятся на 6 по предположению, вторые делятся на 3, но m(m+1) число четное, т.к. четным является либо m либо m+1, следовательно два вторых слагаемых тоже делятся на 6, а значит и вся сумма делится на 6. утверждение доказано
Чтобы прибавить, или отнять дроби с разными знаменателями, мы приводим к наименьшему общему знаменателю, и прибавляем(или отнимаем)
Если числитель и знаменатель дроби умножить или разделить на одно и тоже натуральное число, то получится равная ей дробь.
Это значит разделить и числитель и знаменатель на одно и то же число, не равное нулю. Например дробь 2/4 сокращаем на два:1/2.5/10 сокращаем на 5=1/2
незнаю, наверное до бесконечности
Дробь называют несократимой тогда, когда сократить эту дробь невозможно...
Сори, времени сейчас нет, дальше не могу решать..
2) докажите, что число n³ - n делится на 6
Решение
при n = 2, имеем 8 - 2 = 6 утверждение верно.
Полагаем, что оно верно при n = m.
Покажем, что оно выполняется и при n = m + 1
(m+1)² - (m+1)=m³ - m + 3m² + 3m
Первые два слагаемых делятся на 6 по предположению,
вторые делятся на 3, но m(m+1) число четное, т.к. четным является
либо m либо m+1, следовательно два вторых слагаемых тоже делятся на 6, а значит и вся сумма делится на 6. утверждение доказано