В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
nik255377866689
nik255377866689
13.09.2020 10:03 •  Алгебра

Просто составить уравнение всех касательных к графику функции y = проходящих через начало координат.

Показать ответ
Ответ:
nastyagrng
nastyagrng
02.10.2020 05:36
Уравнение касательной: Y=y(a)+y'(a)*(x-a), где а - абсцисса точки касания
Т.к. касательная проходит через начало координат, то Y(0)=0

y(a)= \frac{a+9}{a+5}
y'= \frac{(x+9)'*(x+5)-(x+9)(x+5)'}{(x+5)^{2}}=\frac{x+5-(x+9)}{(x+5)^{2}}=\frac{x+5-x-9}{(x+5)^{2}}=-\frac{4}{(x+5)^{2}}
y'(a)=-\frac{4}{(a+5)^{2}}

Y=\frac{a+9}{a+5}-\frac{4}{(a+5)^{2}}*(x-a)=\frac{(a+9)(a+5)-4(x-a)}{(a+5)^{2}}=\frac{(a^{2}+14a+45)-4x+4a}{(a+5)^{2}}=\frac{a^{2}+18a+45-4x}{(a+5)^{2}}
Подставим в выражение x=0, Y=0 и решим уравнение:
\frac{a^{2}+18a+45}{(a+5)^{2}}=0
a^{2}+18a+45=0, D=144=12^{2}
a_{1}= \frac{-18-12}{2}=-15
a_{2}= \frac{-18+12}{2}=-3

Получается две касательных, проходящих через абсциссы -15 и -3:
Y(-3)=\frac{(-3)^{2}-18*3+45-4x}{(-3+5)^{2}}=\frac{9-54+45-4x}{4}=\frac{-4x}{4}=-x
Y(-15)=\frac{(-15)^{2}-18*15+45-4x}{(-15+5)^{2}}=\frac{225-270+45-4x}{100}=-\frac{x}{25}
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота