В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
SadPlayer007
SadPlayer007
21.08.2020 13:44 •  Алгебра

Проверить на сходимость ряд по первому признаку сравнения числовых рядов σ от n=1 до бесконечности

Показать ответ
Ответ:
DaNa0414
DaNa0414
07.10.2020 10:17
Начиная с n = 4 выполняются неравенства
2n + 1 <= 3n
2n >= n
2n - 2 >= n
2n - 4 >= n,
поэтому
\dfrac{2n+1}{(2n)}=\dfrac{2n+1}{2n\cdot(2n-2)\cdot(2n-4)\cdot\dots}\leqslant\dfrac{3n}{n^3}=\dfrac3{n^2}

Ряд 
\displaystyle\sum_{n=1}^\infty\frac3{n^2}=3\sum_{n=1}^\infty\dfrac1{n^2}
сходится, поэтому по признаку сравнения сходится и исходный ряд
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота