В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
dja4enkodanil16
dja4enkodanil16
21.03.2020 23:03 •  Алгебра

Проверка домашнего задания Задача. Найти скалярное произведение векторов pa+3b и q=5a-3b, если их длины [a]=3 [b]=2, а угол между векторами a и b равен 60°

Показать ответ
Ответ:
СветаТихая
СветаТихая
29.06.2020 13:41
Sin 3x + Sin 5x = 2(Cos² 2x - Sin² 3x) 

Для левой части ур-ия применим формулу суммы синусов: 
Sin x + Sin y = 2Sin ((x + y)/2) · Cos ((x - y)/2) 
А для правой части формулы понижения степени: 
Cos² x = (1 + Cos 2x) / 2 
Sin² x = (1 - Cos 2x) / 2 

То есть: 
2Sin 4x · Cos x = 2 · ((1 + Cos 4x)/2 - (1 - Cos 6x)/2)) 

2Sin 4x · Cos x = 1 + Cos 4x - 1 + Cos 6x 

2Sin 4x · Cos x = Cos 4x + Cos 6x 

Для правой части ур-ия применим формулу суммы косинусов: 
Cos x + Cos y = 2Cos ((x + y)/2) · Cos ((x - y)/2) 

2Sin 4x · Cos x = 2Cos 5x * Cos x 

2Sin 4x · Cos x - 2Cos 5x * Cos x = 0 

Выносим общий множитель 2Cos x: 
2Cos x · (Sin 4x - Cos 5x) = 0 

Отсюда: 
Cos x = 0 ⇒ x = ±π/2 + 2πk, k — целое 

Sin 4x - Cos 5x = 0 

Cos (π/2 - 4x) - Cos (5x) = 0 

Применяем формулу разности косинусов: 
Cos x - Cos y = -2Sin ((x + y)/2) · Sin ((x - y)/2) 

То есть: 
-2Sin ((π/2 + x)/2) · Sin ((π/2 - 9x)/2) = 0 

1) Sin ((π/2 + x)/2) = 0 
(π/2 + x)/2 = πk 
π/2 + x = 2πk 
x = -π/2 + 2πk 

2) Sin ((π/2 - 9x)/2) = 0 
(π/2 - 9x)/2 = πk 
π/2 - 9x = 2πk 
9x = π/2 - 2πk 
x = π/18 - 2π/(9k) 

ответ: 
x = ±π/2 + 2πk, k — целое 
x = π/18 - 2π/(9k)
0,0(0 оценок)
Ответ:
evgehafly
evgehafly
27.06.2022 17:46

Каким бы мы не решали, стоит разложить выражение на множители.

\displaystyle x^2-x-9=0\\ D=(-1)^2 -4\cdot 1\cdot (-9)=1+36=37\\ \\ x_1 =\frac{-(-1)+\sqrt{D}}{2\cdot 1} =\frac{1+\sqrt{37}}{2} \\ \\ x_2 =\frac{-(-1)-\sqrt{D}}{2\cdot 1} =\frac{1-\sqrt{37}}{2} \\ \\ x^2-x-9=1\cdot (x-x_1)(x-x_2)=\bigg( x-\frac{1+\sqrt{37}}{2} \bigg) \bigg( x-\frac{1-\sqrt{37}}{2} \bigg)

Тогда имеем: \displaystyle \bigg( x-\frac{1+\sqrt{37}}{2} \bigg) \bigg( x-\frac{1-\sqrt{37}}{2} \bigg)<0

1ый через знак множителей):

Произведение будет отрицательным, если один из множителей отрицательный, а другой положительный.

\begin{bmatrix}\begin{Bmatrix}\displaystyle x-\frac{1+\sqrt{37}}{2} 0\\ \displaystyle x-\frac{1-\sqrt{37}}{2} <0\end{matrix} \\ \begin{Bmatrix}\displaystyle x-\frac{1+\sqrt{37}}{2} <0\\ \displaystyle x-\frac{1-\sqrt{37}}{2} 0\end{matrix}\end{matrix} \quad \begin{bmatrix}\begin{Bmatrix}\displaystyle x\frac{1+\sqrt{37}}{2} \\ \displaystyle x<\frac{1-\sqrt{37}}{2} \end{matrix} \\ \begin{Bmatrix}\displaystyle x<\frac{1+\sqrt{37}}{2} \\ \displaystyle x\frac{1-\sqrt{37}}{2} \end{matrix}\end{matrix}

ответ: \displaystyle x\in \bigg( \frac{1-\sqrt{37}}{2} ;\frac{1+\sqrt{37}}{2} \bigg)

2ой метод интервалов):

Отмечаем на координатной прямой точки, в которых выражение обращается в ноль. И выкалываем их т.к. неравенство строгое (<, а не ≤). Мы получили 3 интервала. Перед множителями знак положителен, поэтому на правом интервале ставим "плюс", далее чередуем знак через каждую отмеченную точку (нету чётных степеней, где знак может не измениться). Нас интересует, когда меньше, поэтому выбираем интервалы с минусом.

ответ: \displaystyle x\in \bigg( \frac{1-\sqrt{37}}{2} ;\frac{1+\sqrt{37}}{2} \bigg)

3ий графический):

y = x²-x-9

Это парабола, ветви которой направлены вверх. У функции есть два нуля:

\displaystyle x_1 =\frac{1+\sqrt{37}}{2} ;\qquad x_2 =\frac{1-\sqrt{37}}{2}. Нас интересует, когда меньше нуля, это когда график ниже оси Ox.

ответ: \displaystyle x\in \bigg( \frac{1-\sqrt{37}}{2} ;\frac{1+\sqrt{37}}{2} \bigg)


Решите неравенство двумя я напишу только один пример, просто хочу посмотреть образец) 1) х^2-x-9<
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота