x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
Числовое множество (- 14; 4) содержится в данном интервале.
Числовое множество (- 12; 5) содержится в данном интервале.
Пошаговое объяснение:
Дан интервал (-14; 6).
Если ниже представлены варианты возможных ответов:
1.(6; 10)
2.(14; 4)
3.(12; 5),
то они, видимо, записаны с ошибками.
Думаю, что ответ должен быть таким:
А вот (6; 10) не содержится в данном интервале. Докажем это:
например, число 9∈(6; 10), но 9∉ (-14; 6).
x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.Числовое множество (- 14; 4) содержится в данном интервале.
Числовое множество (- 12; 5) содержится в данном интервале.
Пошаговое объяснение:
Дан интервал (-14; 6).
Если ниже представлены варианты возможных ответов:
1.(6; 10)
2.(14; 4)
3.(12; 5),
то они, видимо, записаны с ошибками.
Думаю, что ответ должен быть таким:
Числовое множество (- 14; 4) содержится в данном интервале.
Числовое множество (- 12; 5) содержится в данном интервале.
А вот (6; 10) не содержится в данном интервале. Докажем это:
например, число 9∈(6; 10), но 9∉ (-14; 6).