P.S забыла скобку фигурную слева, там где x = -2y-16, -5y=25
Если коротко объяснить решения, то это метод подстановки. Выражаем одну переменную через другую и подставляем ее в другое уравнение. Ещё можно решать через графический метод, но это достаточно долго, можно было привести через метод алгебраического сложения:
{x+2y=-16,
{2x-y=-7; | Будем действовать через игрек. Умножаем уравнение на 2.
{x+2y=-16,
{4x-2y=-14;
Теперь там где фигурная скобка ( она должна быть большой, захватывать два уравнения ), мы ставим знак + и складываем уравнения.
{x+2y=-16,
{4x-2y=-14;
_________
(x+4x)+(2y+(-2y))=-16+(-14)
2y у нас уходят, получаем:
5x=-30, | 5
x=-6.
Возвращаемся к системе уравнений, не забывая переписать x.
{x=-6,
{-6+2y=-16;
{x=-6,
{2y=-16+6;
{x=-6,
{2y=-10; | 2
{x=-6,
{y=-5.
И, собственно, получим тот же ответ. Алгебраическое сложение можно использовать и с минусом. ( если бы у нас вышло, например, x+2y=-16 и 4x+2y=-14. Тогда бы все, что поменялось, так это сложение мы бы заменили вычитанием.
В случае,если под корнем после запятой чётное количество знаков или нулей(до запятой и после неё,например V0,04,соответственно),то число рациональное. Вот и всё правило!Делаем выводы:первое не подходит,число нулей нечётное,да ещё и после запятой нечётное число знаков(3). Третье отпадает - после запятой(она после целого числа) вообще нуль знаков. А вот 2 - подходит к нашему условию,после запятой 2 знака. А тут даже видно:1,3*1,3 = 1,69 (сначала перемножаем числа без запятых,а потом с полученного числа,с целой части,двигаем запятую на сумму чисел после запятых множителей. Всё поняли?Большинство в это не врубается,теперь вы знаете,что делать!:)
(-6, -5 )
Объяснение:
P.S забыла скобку фигурную слева, там где x = -2y-16, -5y=25
Если коротко объяснить решения, то это метод подстановки. Выражаем одну переменную через другую и подставляем ее в другое уравнение. Ещё можно решать через графический метод, но это достаточно долго, можно было привести через метод алгебраического сложения:
{x+2y=-16,
{2x-y=-7; | Будем действовать через игрек. Умножаем уравнение на 2.
{x+2y=-16,
{4x-2y=-14;
Теперь там где фигурная скобка ( она должна быть большой, захватывать два уравнения ), мы ставим знак + и складываем уравнения.
{x+2y=-16,
{4x-2y=-14;
_________
(x+4x)+(2y+(-2y))=-16+(-14)
2y у нас уходят, получаем:
5x=-30, | 5
x=-6.
Возвращаемся к системе уравнений, не забывая переписать x.
{x=-6,
{-6+2y=-16;
{x=-6,
{2y=-16+6;
{x=-6,
{2y=-10; | 2
{x=-6,
{y=-5.
И, собственно, получим тот же ответ. Алгебраическое сложение можно использовать и с минусом. ( если бы у нас вышло, например, x+2y=-16 и 4x+2y=-14. Тогда бы все, что поменялось, так это сложение мы бы заменили вычитанием.
Вот и всё правило!Делаем выводы:первое не подходит,число нулей нечётное,да ещё и после запятой нечётное число знаков(3).
Третье отпадает - после запятой(она после целого числа) вообще нуль знаков.
А вот 2 - подходит к нашему условию,после запятой 2 знака.
А тут даже видно:1,3*1,3 = 1,69 (сначала перемножаем числа без запятых,а потом с полученного числа,с целой части,двигаем запятую на сумму чисел после запятых множителей.
Всё поняли?Большинство в это не врубается,теперь вы знаете,что делать!:)