Y=x⁴-8x² 1) Находим область определения функции: D(y)=R Данная функция непрерывна на R 2) Находим производную функции: y`(x)=4x³-16x=4x(x²-4)=4x(x-2)(x+2) 3) Находим критические точки: D(y`)=R y`(x)=0 4x(x-2)(x+2)=0 x=0 или х=2 или х=-2 4) Находим знак производной и характер поведения функции: - + - + -202 ↓ min ↑ max ↓ min ↑
у(х) - убывает на х∈(-∞;-2)U(0;2) у(х) - возрастает на (-2;0)U(2;+∞) х=-2 и х=2 - точки минимума функции х=0 - точка максимума функции -2; 0; 2- точки экстремума функции у(-2)=(-2)⁴-8*(-2)²=16-8*4=16-32=-16 у(2)=2⁴-8*2²=16-8*4=16-32=-16 у(0)=0⁴-8*0²=0-0=0 ответ: Функция монотонно возрастает на (-2;0)U(2:+∞) и монотонно убывает на (-∞;-2)U(0;2), x(min)=(+-)2, y(min)=-16, x(max)=0, y(max)=0
1. Выпадение 2 очков при 1 бросании = 6, при втором бросании, тоже = 6, значит равновозможных исходов 6*6=36
2. Для того, чтобы 2 очка были наименьшими из выпавших, при первом броске должно выпасть 2, при втором броске - любое количество очков, кроме 1. Или при первом броске - любое, кроме 1, а при втором броске - 2 очка.
3. Возможен вариант выпадения 2 очков и при 1 и при 2 броске, поэтому, при подсчете, вариант это учитывается 2 раза.
3. Выпадение 2 очков из всех, кроме 1 очка = 5, при первом, и 5 при втором броске:
количество благоприятных исходов: 5+5-1=9 ((-1) - выпадение 2 очков в каждом из двух бросаний)
1) Находим область определения функции:
D(y)=R Данная функция непрерывна на R
2) Находим производную функции:
y`(x)=4x³-16x=4x(x²-4)=4x(x-2)(x+2)
3) Находим критические точки:
D(y`)=R y`(x)=0
4x(x-2)(x+2)=0
x=0 или х=2 или х=-2
4) Находим знак производной и характер поведения функции:
- + - +
-202
↓ min ↑ max ↓ min ↑
у(х) - убывает на х∈(-∞;-2)U(0;2)
у(х) - возрастает на (-2;0)U(2;+∞)
х=-2 и х=2 - точки минимума функции
х=0 - точка максимума функции
-2; 0; 2- точки экстремума функции
у(-2)=(-2)⁴-8*(-2)²=16-8*4=16-32=-16
у(2)=2⁴-8*2²=16-8*4=16-32=-16
у(0)=0⁴-8*0²=0-0=0
ответ: Функция монотонно возрастает на (-2;0)U(2:+∞) и монотонно убывает на (-∞;-2)U(0;2), x(min)=(+-)2, y(min)=-16, x(max)=0, y(max)=0
1. Выпадение 2 очков при 1 бросании = 6, при втором бросании, тоже = 6, значит равновозможных исходов 6*6=36
2. Для того, чтобы 2 очка были наименьшими из выпавших, при первом броске должно выпасть 2, при втором броске - любое количество очков, кроме 1. Или при первом броске - любое, кроме 1, а при втором броске - 2 очка.
3. Возможен вариант выпадения 2 очков и при 1 и при 2 броске, поэтому, при подсчете, вариант это учитывается 2 раза.
3. Выпадение 2 очков из всех, кроме 1 очка = 5, при первом, и 5 при втором броске:
количество благоприятных исходов: 5+5-1=9 ((-1) - выпадение 2 очков в каждом из двух бросаний)
4. Вероятность благоприятного исхода: 9/36=1/4=0.25
ответ: 0.25