Решение Пусть х км/ч - скорость второго пешехода. Тогда скорость первого - (х+1) км/ч. Так как встретились пешеходы в 9 км от пункта А, путь первого составил 9 км, а путь второго - 10 км. Значит, второй пешеход провел в пути (10/х) часов, а первый (9/(х+1)+0,5) часов, полчаса из которых потратил на остановку. Составим равнение: 10/x = 9/(x + 1) + 1/2 10/x = (18 + x + 1)/([2*(x + 1)] 20x + 20 = 18x + x² + x x² – x – 20 = 0 x₁ = - 4 не удовлетворяет условию задачи x₂ = 5 5 (км/ч) - скорость второго пешехода 1) 5 + 1 = 6 (км/ч) - скорость первого пешехода ответ: 6 км/ч ; 5 км/ч.
В решении.
Объяснение:
Решить уравнение:
1) х² - 6х + 8 = 0
D=b²-4ac =36 - 32 = 4 √D=2
х₁=(-b-√D)/2a
х₁=(6-2)/2
х₁=4/2
х₁=2;
х₂=(-b+√D)/2a
х₂=(6+2)/2
х₂=8/2
х₂=4;
2) х² + 4х - 12 = 0
D=b²-4ac =16 + 48 = 64 √D=8
х₁=(-b-√D)/2a
х₁=(-4-8)/2
х₁= -12/2
х₁= -6;
х₂=(-b+√D)/2a
х₂=-4+8)/2
х₂=4/2
х₂=2.
3) х² + х + 2 = 0
D=b²-4ac = 1 - 8 = -7
D < 0
Уравнение не имеет действительных корней.
4) 12х² - 7х + 1 = 0
D=b²-4ac = 49 - 48 = 1 √D=1
х₁=(-b-√D)/2a
х₁=(7-1)/24
х₁=6/24
х₁=1/4
х₂=(-b+√D)/2a
х₂=(7+1)/24
х₂=8/24
х₂=1/3;
5) 2х² - 3х + 7 = 0
D=b²-4ac = 9 - 56 = -47
D < 0
Уравнение не имеет действительных корней.
6) 7х² - 8х + 1 = 0
D=b²-4ac = 64 - 28 = 36 √D=6
х₁=(-b-√D)/2a
х₁=(8-6)/14
х₁=2/14
х₁=1/7;
х₂=(-b+√D)/2a
х₂=(8+6)/14
х₂=14/14
х₂=1.
2. Все квадратные трёхчлены, имеющие корни, можно разложить на множители.
3. х² - 6х + 8 = (х - 2)(х - 4);
х² + 4х - 12 = (х + 6)(х - 2);
12х² - 7х + 1 = 12(х - 1/4)(х - 1/3);
7х² - 8х + 1 = 7(х - 1/7)(х - 1).
Пусть х км/ч - скорость второго пешехода.
Тогда скорость первого - (х+1) км/ч.
Так как встретились пешеходы в 9 км от пункта А,
путь первого составил 9 км, а путь второго - 10 км.
Значит, второй пешеход провел в пути (10/х) часов,
а первый (9/(х+1)+0,5) часов, полчаса из которых потратил на остановку.
Составим равнение:
10/x = 9/(x + 1) + 1/2
10/x = (18 + x + 1)/([2*(x + 1)]
20x + 20 = 18x + x² + x
x² – x – 20 = 0
x₁ = - 4 не удовлетворяет условию задачи
x₂ = 5
5 (км/ч) - скорость второго пешехода
1) 5 + 1 = 6 (км/ч) - скорость первого пешехода
ответ: 6 км/ч ; 5 км/ч.