Пусть событие B состоит в том ,что в серии из 10 подбрасываний монеты орёл выпадает чётное число раз, не менее 2 раз. Сколько элементарных событий благоприятствует событию В?
Пусть скорость течения реки (х) км/час собственная скорость лодки (у) км/час ---это и скорость в стоячей воде))) тогда скорость ПО течению будет (у+х) км/час скорость ПРОТИВ течения будет (у-х) км/час t = S / v время = путь / скорость на путь 54 км ПО течению реки лодка потратит (54 / (у+х)) часов на путь 48 км БЕЗ течения лодка потратит (48 / у) часов и всего 6 часов))) (54 / (у+х)) + (48/у) = 6 (64/у) - (36/(у+х)) = 2 система 48х + 102у = 6*у*(х+у) 64х + 28у = 2*у*(х+у)
8х + 17у = у*(х+у) 32х + 14у = у*(х+у)
8х + 17у = 32х + 14у 24х = 3у у = 8х
8х + 17*8х = 8х*(х+8х) 18х = 9х² 2х = х² х² - 2х = 0 х*(х - 2) = 0 ---> х = 0 (этот корень не имеет смысла))) х = 2 (км/час) ---скорость течения реки у = 8х = 16 (км/час) собственная скорость лодки ПРОВЕРКА: (54 / 18) + (48 / 16) = 3+3 = 8 часов))) 64 / 16 = 4 часа в стоячей воде двигалась лодка 36 / 18 = 2 часа по течению реки ---это на 2 часа больше)))
В случае 12-угольника сумма равна 1800 градусов. Т. к. он правильный, то углы его равны 1800/12=150 градусов. ответ : 150°
2. Площадь параллелограмма равна произведению его основания (a) на высоту (h):
S = a ⋅ h
144 см² = а ⋅ 16 см
a = 9 см
3.s = a * b / 2
a - катет b - катет
a = 12
b^2 = 13^2 - 12^2
b^2 = 169 - 144
b^2 = 25
b = 5
S = 5 * 12 / 2
S = 30
4. Площадь ромба можно найти по формуле S = 0,5d₁d₂, где d₁ и d₂ - его диагонали.
Т.к. ромб - это параллелограмм, у которого все стороны равны, то он обладает всеми свойствами параллелограмма, а именно: диагонали ромба точкой пересечения делятся пополам. Значит, полусумма диагоналей равна 28 : 2 = 14 (см).
Свойство ромба: диагонали ромба перпендикулярны. Значит, при пересечении диагоналей ромба получаются 4 прямоугольных треугольника, у которых катеты - половины диагоналей, а гипотенуза - сторона ромба.
Рассмотрим один из прямоугольных треугольников и, применив теорему Пифагора, найдем его катеты.
Пусть один из катетов х см, тогда второй будет равен (14 - х) см. Т.к. сторона ромба равна 10 см, то составим и решим уравнение:
Если один из катетов равен 8 см, то второй будет равен 14 - 8 = 6 (см). Тогда диагонали ромба будут равны 16 см и 12 см, а площадь
S = 0,5 · 16 · 12 = 96 (см²)
Если один из катетов равен 6 см, то второй будет равен 14 - 6 = 8 (см). Тогда диагонали ромба будут равны 12 см и 16 см, а площадь
S = 0,5 · 12 · 16 = 96 (см²)
ответ: 96 см².
5.Обозначим трапецию АВСД. угол С=угол Д=90 градусов. так как в трапецию можно вписать окружность, то суммы противоположных сторон равны ВС+АД=СД+АВ.
проведём высоту ВК. Она разделила трапецию на прямоугольник ДСВК и прямоугольный треугольник АВК. Так как острый уголА = 45 градусов, то второй острый угол АВК = 90-45=45 градусов, значит треугольник равнобедренный, ВК=АК.
Пусть АК=х тогда и ВК=х, по т. Пифагора х²+х²=(12√2)², 2х²=144·2, х²=144, х=12, АК=12 см, ВК=12 см, тогда и СД=12 см.S(ABCD)=1/2·(АД+ВС)·ВК=1/2·(12+12√2)·12=72·(1+√2)
собственная скорость лодки (у) км/час ---это и скорость в стоячей воде)))
тогда скорость ПО течению будет (у+х) км/час
скорость ПРОТИВ течения будет (у-х) км/час
t = S / v время = путь / скорость
на путь 54 км ПО течению реки лодка потратит (54 / (у+х)) часов
на путь 48 км БЕЗ течения лодка потратит (48 / у) часов и всего 6 часов)))
(54 / (у+х)) + (48/у) = 6
(64/у) - (36/(у+х)) = 2
система
48х + 102у = 6*у*(х+у)
64х + 28у = 2*у*(х+у)
8х + 17у = у*(х+у)
32х + 14у = у*(х+у)
8х + 17у = 32х + 14у
24х = 3у
у = 8х
8х + 17*8х = 8х*(х+8х)
18х = 9х²
2х = х²
х² - 2х = 0
х*(х - 2) = 0 ---> х = 0 (этот корень не имеет смысла)))
х = 2 (км/час) ---скорость течения реки
у = 8х = 16 (км/час) собственная скорость лодки
ПРОВЕРКА:
(54 / 18) + (48 / 16) = 3+3 = 8 часов)))
64 / 16 = 4 часа в стоячей воде двигалась лодка
36 / 18 = 2 часа по течению реки ---это на 2 часа больше)))
1. Сумма углов n-угольника равна 180°(n-2).
В случае 12-угольника сумма равна 1800 градусов. Т. к. он правильный, то углы его равны 1800/12=150 градусов. ответ : 150°
2. Площадь параллелограмма равна произведению его основания (a) на высоту (h):
S = a ⋅ h
144 см² = а ⋅ 16 см
a = 9 см
3.s = a * b / 2
a - катет b - катет
a = 12
b^2 = 13^2 - 12^2
b^2 = 169 - 144
b^2 = 25
b = 5
S = 5 * 12 / 2
S = 30
4. Площадь ромба можно найти по формуле S = 0,5d₁d₂, где d₁ и d₂ - его диагонали.
Т.к. ромб - это параллелограмм, у которого все стороны равны, то он обладает всеми свойствами параллелограмма, а именно: диагонали ромба точкой пересечения делятся пополам. Значит, полусумма диагоналей равна 28 : 2 = 14 (см).
Свойство ромба: диагонали ромба перпендикулярны. Значит, при пересечении диагоналей ромба получаются 4 прямоугольных треугольника, у которых катеты - половины диагоналей, а гипотенуза - сторона ромба.
Рассмотрим один из прямоугольных треугольников и, применив теорему Пифагора, найдем его катеты.
Пусть один из катетов х см, тогда второй будет равен (14 - х) см. Т.к. сторона ромба равна 10 см, то составим и решим уравнение:
х² + (14 - х)² = 10²,
х² + 196 - 28х + х² - 100 = 0,
2х² - 28х + 96 = 0,
х² - 14х + 48 = 0.
D = (-14)² - 4 · 1 · 48 = 196 - 192 = 4; √4 = 2
х₁ = (14 + 2)/(2 · 1) = 16/2 = 8, х₂ = (14 - 2)/(2 · 1) = 12/2 = 6
Если один из катетов равен 8 см, то второй будет равен 14 - 8 = 6 (см). Тогда диагонали ромба будут равны 16 см и 12 см, а площадь
S = 0,5 · 16 · 12 = 96 (см²)
Если один из катетов равен 6 см, то второй будет равен 14 - 6 = 8 (см). Тогда диагонали ромба будут равны 12 см и 16 см, а площадь
S = 0,5 · 12 · 16 = 96 (см²)
ответ: 96 см².
5.Обозначим трапецию АВСД. угол С=угол Д=90 градусов. так как в трапецию можно вписать окружность, то суммы противоположных сторон равны ВС+АД=СД+АВ.
проведём высоту ВК. Она разделила трапецию на прямоугольник ДСВК и прямоугольный треугольник АВК. Так как острый уголА = 45 градусов, то второй острый угол АВК = 90-45=45 градусов, значит треугольник равнобедренный, ВК=АК.
Пусть АК=х тогда и ВК=х, по т. Пифагора х²+х²=(12√2)², 2х²=144·2, х²=144, х=12, АК=12 см, ВК=12 см, тогда и СД=12 см.S(ABCD)=1/2·(АД+ВС)·ВК=1/2·(12+12√2)·12=72·(1+√2)