№ 1
Пусть х - количество мобильных пунктов управления.
(х² - х) : 2 = 36
х² - х = 36 * 2
х² - х = 72
х² - х - 72 = 0
D = (- 1)² - 4 * (-72) = 1 + 288 = 289 = 17²
Второй корень не подходит, значит, количество мобильных пунктов управления равно 9.
ответ: 9.
№ 2
Пусть х - % снижения стоимости товара в первый раз,
тогда 2х - % снижения стоимости товара во второй раз.
(50 - 50 : 100 * х) руб. - стоимость товара после первого снижения цены;
((50 - 50 : 100 * х) - (50 - 50 : 100 * х) : 100 * 2х) руб. - стоимость товара после второго снижения цены.
(50 - 50 : 100 * х) - (50 - 50 : 100 * х) : 100 * 2х = 29,75
50 - 0,5х - (50 - 0,5х) : 100 * 2х = 29,75
50 - 0,5х - х + 0,01х² = 29,75
0,01х² - 1,5х + 50 - 29,75 = 0
0,01х² - 1,5х + 20,25 = 0
х² - 150х + 2025 = 0
D = 150² - 4 * 2025 = 22500 - 8100 = 14400 = 120²
Первый корень не подходит, так как процент снижения не может быть больше 100%, значит, в первый раз цена товара снизилась на 15%.
ответ: 15%.
№ 1
Пусть х - количество мобильных пунктов управления.
(х² - х) : 2 = 36
х² - х = 36 * 2
х² - х = 72
х² - х - 72 = 0
D = (- 1)² - 4 * (-72) = 1 + 288 = 289 = 17²
Второй корень не подходит, значит, количество мобильных пунктов управления равно 9.
ответ: 9.
№ 2
Пусть х - % снижения стоимости товара в первый раз,
тогда 2х - % снижения стоимости товара во второй раз.
(50 - 50 : 100 * х) руб. - стоимость товара после первого снижения цены;
((50 - 50 : 100 * х) - (50 - 50 : 100 * х) : 100 * 2х) руб. - стоимость товара после второго снижения цены.
(50 - 50 : 100 * х) - (50 - 50 : 100 * х) : 100 * 2х = 29,75
50 - 0,5х - (50 - 0,5х) : 100 * 2х = 29,75
50 - 0,5х - х + 0,01х² = 29,75
0,01х² - 1,5х + 50 - 29,75 = 0
0,01х² - 1,5х + 20,25 = 0
х² - 150х + 2025 = 0
D = 150² - 4 * 2025 = 22500 - 8100 = 14400 = 120²
Первый корень не подходит, так как процент снижения не может быть больше 100%, значит, в первый раз цена товара снизилась на 15%.
ответ: 15%.
ОДЗ:
{x^2>0; x e R, но х не равен нулю
{6x+27>0; 6x>-27; x>-4,5
x e (-4,5; 0) U (0; + беск.)
x^2<6x+27
x^2-6x-27<0
x^2-6x-27=0
D=(-6)^2-4*1*(-27)=144
x1=(6-12)/2=-3; x2=(6+12)/2=9
+(-3)-(9)+
x e (-3; 9)
С учетом ОДЗ: x e (-3;0)U(0;9)
ответ: -2
2) log7(log3(log3(x)))<=0
ОДЗ:
log3(log3(x))>0
log3(log3(x))> log3(1)
log3(x)>1
log3(x)>log3(3)
x>3
log7(log3(log3(x))) <=log7(1)
log3(log3(x))<=1
log3(log3(x))<=log3(3)
log3(x)<=3
log3(x)<=log3(27)
x<=27
С учетом ОДЗ: x e (3; 27]
Неравенству удовлетворяют 24 значений.