Ну тут все просто) Так как это не система, мы можешь подобрать любые числа, подчиняющиеся данным условиям) а) x=3, y=1 Проверка: 3-1=2 и 3+1=не равняется 8, не является решением второго, но является решением первого уравнения б) x=6, y=2 Проверка: 6-2=не равняется двум и 6+2=8, не является решением первого, но является решением второго в) x=5, y=3 Проверка: 5-3=2 и 5+3=8, являются решением и первого, и второго уравнения г) x=8, y=2 Проверка: 8-2=не равняется двум и 8+2=не равняется 8, значит не является решением ни первого уравнения ни второго
Так как это не система, мы можешь подобрать любые числа, подчиняющиеся данным условиям)
а) x=3, y=1
Проверка:
3-1=2 и 3+1=не равняется 8, не является решением второго, но является решением первого уравнения
б) x=6, y=2
Проверка:
6-2=не равняется двум и 6+2=8, не является решением первого, но является решением второго
в) x=5, y=3
Проверка:
5-3=2 и 5+3=8, являются решением и первого, и второго уравнения
г) x=8, y=2
Проверка:
8-2=не равняется двум и 8+2=не равняется 8, значит не является решением ни первого уравнения ни второго
2sin(x/2)=3sin²(x/2)
2sin(x/2)-3sin²(x/2)=0
sin(x/2) (2-3sin(x/2))=0
a) sin(x/2)=0
x/2=πk, k∈Z
x=2πk, k∈Z
b) 2-3sin(x/2)=0
-3sin(x/2)=-2
sin(x/2)=2/3
x/2=(-1)^n * arcsin(2/3)+πk, k∈Z
x=2*(-1)^n * arcsin(2/3)+2πk, k∈Z
ответ: 2πk, k∈Z;
2*(-1)^k*arcsin(2/3)+2πk, k∈Z.
2)
sin6xcosx+cos6xsinx=0.5
sin(6x+x)=0.5
sin7x=0.5
7x=(-1)^k*(π/6)+πk, k∈Z
x=(-1)^k*(π/42)+(π/7)*k, k∈Z
ответ: (-1)^k*(π/42)+(π/7)*k, k∈Z.
3)
3sinx+4sin(π/2+x)=0
3sinx+4cosx=0
=0
a) При у=-1/2
,
k∈Z;
b) При у=2
k∈Z.
ответ: k∈Z;
k∈Z.