Построение графика на этом этапе элементарно. Из системы можно видеть, что функция f(x) четная. Достаточно построить или левую или правую ее часть, остальное отзеркалить. Готовый рисунок приложен.
Условие не полное. Не определена зависимость сторон от коэффициента подобия к. То есть какие стороны подобны(это не обязательно), а главное порядок отношения сторон относительно к.
Возьмем ваше же уравнение
lx+2l+lxl+lx-2l=4
Левую и правую части уравнения рассматриваем как функции.
f(x)=lx+2l+lxl+lx-2l и g(x)=4
С g(x) все понятно. Это прямая y=4, параллельна Ox.
С f(x) разбираемся. Это кусочная функция. Найдем нули подмодульных выражений:
x+2=0 ⇒ x=-2, x-2=0 ⇒ x=2, x=0.
Имеем интервалы (-∞; -2); [-2; 0); [0; 2); [2; +∞). Запишем равносильный переход:
Построение графика на этом этапе элементарно. Из системы можно видеть, что функция f(x) четная. Достаточно построить или левую или правую ее часть, остальное отзеркалить. Готовый рисунок приложен.
ответ: 1 корень.
Объяснение:
1) Kl=12; KM:ML= 3 : 1
KM=3ML
KM+ML=KL
3ML+ML=12
4ML=12
ML=3
KM=3ML=9
2) AB/ED=YX/LK; AB= 2 см, ED= 3 см и LK= 27 см
YX=LK·AB/ED=27·2/3=54/3=18
YX=18 см
3) ΔKBC∼ΔRTG; k= 18; P₁=8; S₁=9; P₂=?, S₂=?
Условие не полное. Не определена зависимость сторон от коэффициента подобия к. То есть какие стороны подобны(это не обязательно), а главное порядок отношения сторон относительно к.
Рассмотрю оба случая:
a) ΔKBC∼ΔRTG⇒P₂/P₁=k; S₂/S₁=k²
P₂=kP₁=8·18=144 см
S₂=k²S₁=8²·9=64·9=576 см²
б) ΔKBC∼ΔRTG⇒P₁/P₂=k; S₁/S₂=k²
P₂=P₁/=18/8=2,25 см
S₂=S₁/k²=9/8²=9/64 см²