Разложить на множители, используя формулу разности квадратов и Свойства арифметического квадратного корня
а) х-16
б) х^2-3
в) х-5
Записать выражение в виде квадрата суммы или разности двух выражений используя формулу квадрата суммы и разности и Свойства арифметического квадратного корня
а) а-6(корень а)+9=
б) а^2+2а(корень5)+5
2. Во втором прямоугольнике длину уменьшили (и она стала у-6), а ширину увеличили, она стала: (у-15)+8=у-7. Площадь нового прямоугольника: (у-6)(у-7). Эта площадь на 80м2 больше площади первоначального. (у-6)(у-7) - у(у-15)=80
(у2-13у+42) - (у2+15у) =80; 2у=38, у=19(м), х=19-15=4(м), 3.Площадь первоначального: (19м)(4м)=76м2
4.стороны нового: у-6=13, у-7=12, площадь нового (12)(13)=156(м2)
Для её построения надо задаться значениями х и получить значения у:
x -2 -1 0 1 2
y 4 2 1 0,5 0,25
Область определения функции. ОДЗ -00<x<+00.
Область значений (0; +00).
Точка пересечения графика функции с осью координат Y:График пересекает ось Y, когда x равняется 0: подставляем x=0 в (1/2)^x.
Результат: y=1. Точка: (0, 1)Точки пересечения графика функции с осью координат X:График функции пересекает ось X при y=0, значит нам надо решить уравнение:(1/2)^x = 0. Решаем это уравнение и его корни будут точками пересечения с X:
Нету корней, значит график функции не пересекает ось X
Экстремумы функции:Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:y'=-2^(-x)*log(2)=0
Решаем это уравнение и его корни будут экстремумами:- нет решения, значит, нет экстремумов.
Точки перегибов графика функции:Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции,
+ нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:y''=2^(-x)*log(2)^2=0
Решаем это уравнение и его корни будут точками, где у графика перегибы: Не удалось получить решение уравнения. - значит, нет перегибов.
Вертикальные асимптотыНету
Горизонтальные асимптоты графика функции:Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим :lim (1/2)^x, x->+oo = 0, значит уравнение горизонтальной асимптоты справа: y=0lim (1/2)^x, x->-oo = oo, значит горизонтальной асимптоты слева не существуетНаклонные асимптоты графика функции:Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы :lim (1/2)^x/x, x->+oo = 0, значит совпадает с горизонтальной асимптотой слеваlim (1/2)^x/x, x->-oo = -oo, значит наклонной асимптоты слева не существуетЧетность и нечетность функции:Проверим функци четна или нечетна с соотношений f(x)=f(-x) и f(x)=-f(x). Итак, проверяем:(1/2)^x = (1/2)^(-x) - Нет(1/2)^x = -((1/2)^(-x)) - Нетзначит, функция не является ни четной ни нечетной