Разложить на множители в №1-№3
№1. 15а - 5ау
№2. 12р3к2 – 6р4к + 2р6 к5
№3. a2b2 - ab+abк - к
№4. Раскрыть скобки, привести подобные слагаемые:
(m+n) (m-n) + 2(m2 – n2)
№5. Представьте в виде квадрата двучлена: 1 + 6а + 9a2 .
№6. Решите уравнение: 18у – 2у3 =0.
№7. У выражение:
(5х+3)2 –(5х+2)∙ ( 5х – 2 ).
Каждый из юношей может устроиться на любой из
3 + 2 = 5
заводов. То есть для каждого юноши есть 5 вариантов.
всего юношей 3.
По условию задачи на одновременное трудоустройство на один завод запретов нет; следовательно события (работа для каждого юноши) можно считать независимыми
следовательно, общее число вариаций работы для юношей - это перемножение вариантов трудоустройства каждого:
С(общ.юн.) = С(1юн) * С(2юн) * С(3юн) = 5*5*5 = 125 вариантов
Для девушек: аналогичное рассуждение. Заводов
2 + 2 = 4
девушек 2
С(общ.дев.) = С(1дев) * С(2дев) = 4*4= 16 вариантов
Общее число для всех:С(общ) = С(общ.юн) * С(общ.дев) = 125 * 16 = 2000 вариантов.
ОТВЕТ
Каждый из юношей может устроиться на любой из
3 + 2 = 5
заводов. То есть для каждого юноши есть 5 вариантов.
всего юношей 3.
По условию задачи на одновременное трудоустройство на один завод запретов нет; следовательно события (работа для каждого юноши) можно считать независимыми
следовательно, общее число вариаций работы для юношей - это перемножение вариантов трудоустройства каждого:
С(общ.юн.) = С(1юн) * С(2юн) * С(3юн) = 5*5*5 = 125 вариантов
Для девушек: аналогичное рассуждение. Заводов
2 + 2 = 4
девушек 2
С(общ.дев.) = С(1дев) * С(2дев) = 4*4= 16 вариантов
Общее число для всех:С(общ) = С(общ.юн) * С(общ.дев) = 125 * 16 = 2000 вариантов.
ОТВЕТ