1. Область определения функции (-бесконечность;3) и (3;бесконечность) 2. Множество значений функции (-бесконечность2] [10; бесконечность) 3. Проверим является ли данная функция четной или нечетной: у(х) = (x^2-5)/(х-3) y(-х) = (x^2-5)/(-х-3) так как у(х) не =у(-х), и у(-х) не=-у(х), то данная функция не является ни четной ни нечетной. 4. Найдем промежутки возрастания и убывания функции и точки экстремума. y'(x) = (x^2-6x+5)/(x-3)^2; y'(x) = 0 (x^2-6x+5)/(x-3)^2=0 x^2-6x+5=0 х1=5; х2=1. Данные стационарные точки и точка разрыва, разбили числовую прямую на 4 промежутка Так как на промежутках (1;3) и (3;5) производная отрицательна, то на этих промежутках функция убывает Так как на промежутках (-бесконечность;1) и (2;бесконечность) производная положительна, то на этих прмежутках функция возрастает. х=5 точка минимума, у(5) = 10 х=1 точка максимума, у(1) = 2 5. Найдем точки перегиба функции и промежутки выпуклости: y"(x) = 8/(х-3)^3; y"(x)=0 8/(х-3)^3=0 уравнение не имеет корней. Так как на промежутке (3;бесконечность) вторая производная положительна, то график направлен выпуклостью вниз Так ак на промежутке (-бесконечность;3) вторая производная отрицательна то график направлен выпуклостью вверх. Точек перегиба функция не имеет. 6. Проверим имеет ли график функции асмптоты: а) вертикальные: Для этого найдем односторонние пределы в точке разрыва х=3 lim(x стремится к 3 по недостатку)((x^2-5)/(х-3)=-бесконечность lim(x стремится к 3 по избытку)((x^2-5)/(х-3)=бесконечность Следовательно прямая х=3 является вертикальной асимптотой. б) налонные вида у=кх+в: к=lim y(x)/x = lim(x стремится к бесконечности)((x^2-5)/(х(х-3))=1 в = lim (y(x)-kx) = lim ((x^2-5)/(х-3)-х)=lim(3x-5)/(x-3)=3 Cледовательно прямая у=х+3 является наклонной асимптотой. 7. Всё! Стройте график. Удачи!!
Р=20см,S=24см,
Р=2(а+в),
20=2(а+в),
10=а+в,
а=10-в,
S=а*в,
24=а*в,подставим значение а из периметра и получим
24=(10-в)*в,
24=10в-в²,
-в²+10в-24=0 ,
D=в²-4ас=4, D>0,⇒2 вещественных решения, √D=2,
в₁=-в+√D /2а=-10+2/2*(-1)=4,
в₂=-в-√D /2а=-10-2/2*(-1)=6
следовательно стороны у нас равны
а=4 см, в=6 см,
Р=2(а+в)=2(4+6)=20 см,
S=а*в=6*4=24 см²
2)х²+рх-18=0,
х=-9,
81-9р-18=0,
81-18=9р,
63=9р,
р=7,
х²+7х-18=0,
D=в²-4ас=121, D>0,⇒2 вещественных решения, √D=11,
х₁=-в+√D /2а=-7+11/2*(1)=2,
х₂=-в-√D /2а=-7+11/2*(1)=-9
1. Область определения функции (-бесконечность;3) и (3;бесконечность)
2. Множество значений функции (-бесконечность2] [10; бесконечность)
3. Проверим является ли данная функция четной или нечетной:
у(х) = (x^2-5)/(х-3)
y(-х) = (x^2-5)/(-х-3) так как у(х) не =у(-х), и у(-х) не=-у(х), то данная функция не является ни четной ни нечетной.
4. Найдем промежутки возрастания и убывания функции и точки экстремума.
y'(x) = (x^2-6x+5)/(x-3)^2; y'(x) = 0
(x^2-6x+5)/(x-3)^2=0
x^2-6x+5=0
х1=5; х2=1.
Данные стационарные точки и точка разрыва, разбили числовую прямую на 4 промежутка
Так как на промежутках (1;3) и (3;5) производная отрицательна, то на этих промежутках функция убывает
Так как на промежутках (-бесконечность;1) и (2;бесконечность) производная положительна, то на этих прмежутках функция возрастает.
х=5 точка минимума, у(5) = 10
х=1 точка максимума, у(1) = 2
5. Найдем точки перегиба функции и промежутки выпуклости:
y"(x) = 8/(х-3)^3; y"(x)=0
8/(х-3)^3=0
уравнение не имеет корней.
Так как на промежутке (3;бесконечность) вторая производная положительна, то график направлен выпуклостью вниз
Так ак на промежутке (-бесконечность;3) вторая производная отрицательна то график направлен выпуклостью вверх.
Точек перегиба функция не имеет.
6. Проверим имеет ли график функции асмптоты:
а) вертикальные: Для этого найдем односторонние пределы в точке разрыва х=3
lim(x стремится к 3 по недостатку)((x^2-5)/(х-3)=-бесконечность
lim(x стремится к 3 по избытку)((x^2-5)/(х-3)=бесконечность
Следовательно прямая х=3 является вертикальной асимптотой.
б) налонные вида у=кх+в:
к=lim y(x)/x = lim(x стремится к бесконечности)((x^2-5)/(х(х-3))=1
в = lim (y(x)-kx) = lim ((x^2-5)/(х-3)-х)=lim(3x-5)/(x-3)=3
Cледовательно прямая у=х+3 является наклонной асимптотой.
7. Всё! Стройте график. Удачи!!