Согласно теореме Виета, сумма корней квадратного уравнения равна отрицательному коэффициенту b:
x1 + x2 = -b
Произведение корней квадратного уравнения в этой же теореме равно свободному коэффициенту с:
х1 × х2 = с
Доказательство:
Возьмём следующее уравнение:
х² + 6х - 7 = 0
Сначала решим его через дискриминант:
D = b² - 4ac = 36-4×(-7) = 36+28 = 64
x1,2 = (-b±√D)÷2a = (-6±8)÷2
x1 = (-6+8)÷2 = 1
x2 = (-6-8)÷2 = -7
Теперь решим это же уравнение через теорему Виета:
Мы знаем, что:
х1 + х2 = -b
x1 × x2 = c
Осталось лишь подобрать такие корни уравнения, которые бы подходили под эти два равенства. Путём нехитрых вычислений, находим, что этими корнями являются числа -7 и 1:
-7 + 1 = -6 = -b
-7×1 = -7 = c
ответы сходятся, значит наши рассуждения верны.
Это работает со всеми квадратными уравнениями, в которых коэффициент а = 1.
B₁=3/q (3/q)*(1+q+q²)=10.5 3(1+q+q²)=10.5q 3+3q+3q²=10.5q 3q²-7.5q+3=0 q²-2.5q+1=0 D=(-2.5)²-4=6.25-4=2.25=1.5² q₁=(2.5-1.5)/2=1/2=0.5 не подходит, так как q=0.5 <1 q₂=(2.5+1.5)/2=4/2=2
Согласно теореме Виета, сумма корней квадратного уравнения равна отрицательному коэффициенту b:
x1 + x2 = -b
Произведение корней квадратного уравнения в этой же теореме равно свободному коэффициенту с:
х1 × х2 = с
Доказательство:
Возьмём следующее уравнение:
х² + 6х - 7 = 0
Сначала решим его через дискриминант:
D = b² - 4ac = 36-4×(-7) = 36+28 = 64
x1,2 = (-b±√D)÷2a = (-6±8)÷2
x1 = (-6+8)÷2 = 1
x2 = (-6-8)÷2 = -7
Теперь решим это же уравнение через теорему Виета:
Мы знаем, что:
х1 + х2 = -b
x1 × x2 = c
Осталось лишь подобрать такие корни уравнения, которые бы подходили под эти два равенства. Путём нехитрых вычислений, находим, что этими корнями являются числа -7 и 1:
-7 + 1 = -6 = -b
-7×1 = -7 = c
ответы сходятся, значит наши рассуждения верны.
Это работает со всеми квадратными уравнениями, в которых коэффициент а = 1.
Теорема доказана.
B₁+B₂+B₃=10.5
B₁² * B₂² * B₃²=729
S₇-?
B₂=B₁*q
B₃=B₁*q²
{B₁+B₁*q+B₁*q²=10.5 {B₁(1+q+q²)=10.5 {B₁(1+q+q²)=10.5
{B₁² * B₂² * B₃²=729 {(B₁*B₂*B₃)²=27² {B₁*B₂*B₃=27
{B₁(1+q+q²)=10.5 {B₁(1+q+q²)=10.5 {B₁(1+q+q²)=10.5
{B₁ * B₁*q * B₁*q²=27 {B₁³*q³=3³ {B₁*q=3
B₁=3/q
(3/q)*(1+q+q²)=10.5
3(1+q+q²)=10.5q
3+3q+3q²=10.5q
3q²-7.5q+3=0
q²-2.5q+1=0
D=(-2.5)²-4=6.25-4=2.25=1.5²
q₁=(2.5-1.5)/2=1/2=0.5 не подходит, так как q=0.5 <1
q₂=(2.5+1.5)/2=4/2=2
B₁=3/2=1.5
B₇=B₁ * q⁶=1.5 * 2⁶=1.5 * 64=96
S₇= B₁ - B₇*q = 1.5 - 96*2 =1.5-192 = -190.5 = 190.5
1-q 1-2 -1 -1
ответ: 190,5