В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
kharina0309
kharina0309
17.02.2020 20:57 •  Алгебра

Разложите намножители трёхчлен, выделив предварительно квадрат двучлена: x^2+8*x - 9 ​

Показать ответ
Ответ:
lei123
lei123
26.02.2020 17:54
Раскроем скобки и приведём подобные.

\sqrt{5} +6 - ( \sqrt{5} + \sqrt{6} ) = \sqrt{5} +6 - \sqrt{5} - \sqrt{6} = 6 - \sqrt{6}
 Число 6 - рациональное. А вот число \sqrt{6} - иррациональное. Разность рационального и рационального - есть число иррациональное.

Докажем, что число \sqrt{6} иррациональное.

Предположим, что \sqrt{6} = \frac{a}{b}, где a и b - целые числа, причём они не являются одновременно чётными.

Возведём обе части в квадрат:
(\sqrt{6})^2 = (\frac{a}{b})^2 \\ \\ 6 = \frac{a^2}{b^2} \\ \\ a^2 = 6b^2

Число 6b^2 чётное, следовательно, чётно а², и,значит, чётно а.
Пусть тогда а = 2с. Тогда мы имеем:
a^2 = 6b^2 \\ \\ (2c)^2 = 6b^2 \\ \\ 4c^2 = 6b^2 \\ \\ 2c^2 = 3b^2

Т.к. 2с² чётно, то чётно 3b², откуда следует чётность b² и чётность b.

Мы получили, что a и b - чётные, что противоречит начальному предположению. Следовательно, число \sqrt{6} иррациональное, а вместе с ним иррационально и исходное выражение.
0,0(0 оценок)
Ответ:
linochek278
linochek278
06.12.2021 04:04
Рассмотрим график функции
y=x^2-6x+12+a^2-4a
свободный член c=12+a^2-4a отвечает за подъем/спуск параболы y=x^2-6x вдоль Oy.

По теореме Виета для уравнения x^2-6x+12+a^2-4a=0 (решая относительно x)
\left \{\begin{array}{I} x_1+x_2=6 \\ x_1x_2=12+a^2-4a \end{array}
Из первого уравнения видно, что корни уравнения либо оба положительные, либо один положителен, второй отрицателен. Теперь подробнее разберем второе уравнение. Если оба корня положительны, то их произведение тоже положительно. Докажем, что 12+a^2-4a не может принимать отрицательных значений.

Рассмотрим функцию
y=a^2-4a
это парабола с ветвями вверх. Найдем ее ординату ее вершины
y_0= \dfrac{0-16}{4}=-4
значит -4 - минимальное значение функции и 12+a^2-4a\ \textgreater \ 0 при любом a.

Раз оба корня могут быть только положительными, то модуль их разности будет максимален, если они будут как можно дальше друг от друга на оси Ох, т.е. вершина параболы должна быть как можно ниже. Это означает, что свободный член c должен иметь минимальное значение, а это возможно при
a^2-4a=-4 \\ a^2-4a+4=0 \\ (a-2)^2=0 \\ a-2=0 \\ a=2

ответ: a=2
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота