Число 6 - рациональное. А вот число - иррациональное. Разность рационального и рационального - есть число иррациональное.
Докажем, что число иррациональное.
Предположим, что , где a и b - целые числа, причём они не являются одновременно чётными.
Возведём обе части в квадрат:
Число чётное, следовательно, чётно а², и,значит, чётно а. Пусть тогда а = 2с. Тогда мы имеем:
Т.к. 2с² чётно, то чётно 3b², откуда следует чётность b² и чётность b.
Мы получили, что a и b - чётные, что противоречит начальному предположению. Следовательно, число иррациональное, а вместе с ним иррационально и исходное выражение.
свободный член отвечает за подъем/спуск параболы вдоль Oy.
По теореме Виета для уравнения (решая относительно x)
Из первого уравнения видно, что корни уравнения либо оба положительные, либо один положителен, второй отрицателен. Теперь подробнее разберем второе уравнение. Если оба корня положительны, то их произведение тоже положительно. Докажем, что не может принимать отрицательных значений.
Рассмотрим функцию
это парабола с ветвями вверх. Найдем ее ординату ее вершины
значит -4 - минимальное значение функции и при любом a.
Раз оба корня могут быть только положительными, то модуль их разности будет максимален, если они будут как можно дальше друг от друга на оси Ох, т.е. вершина параболы должна быть как можно ниже. Это означает, что свободный член c должен иметь минимальное значение, а это возможно при
Число 6 - рациональное. А вот число - иррациональное. Разность рационального и рационального - есть число иррациональное.
Докажем, что число иррациональное.
Предположим, что , где a и b - целые числа, причём они не являются одновременно чётными.
Возведём обе части в квадрат:
Число чётное, следовательно, чётно а², и,значит, чётно а.
Пусть тогда а = 2с. Тогда мы имеем:
Т.к. 2с² чётно, то чётно 3b², откуда следует чётность b² и чётность b.
Мы получили, что a и b - чётные, что противоречит начальному предположению. Следовательно, число иррациональное, а вместе с ним иррационально и исходное выражение.
свободный член отвечает за подъем/спуск параболы вдоль Oy.
По теореме Виета для уравнения (решая относительно x)
Из первого уравнения видно, что корни уравнения либо оба положительные, либо один положителен, второй отрицателен. Теперь подробнее разберем второе уравнение. Если оба корня положительны, то их произведение тоже положительно. Докажем, что не может принимать отрицательных значений.
Рассмотрим функцию
это парабола с ветвями вверх. Найдем ее ординату ее вершины
значит -4 - минимальное значение функции и при любом a.
Раз оба корня могут быть только положительными, то модуль их разности будет максимален, если они будут как можно дальше друг от друга на оси Ох, т.е. вершина параболы должна быть как можно ниже. Это означает, что свободный член c должен иметь минимальное значение, а это возможно при
ответ: a=2