Сначала определим время, за которое мотоциклист планировал проехать свой путь (первоначальная скорость=Х). t=120:X Потом он ехал со скоростью 1,2 Х те же 120 км, плюс остановка в пути 15 минут, это 0,25 часа (15:60=0,25). Можем составить уравнение: 120:Х =120:1,2Х + 0,25 Приводим к общему знаменателю, это 1,2Х , подписываем дополнительные множители, перемножаем и получаем новое уравнение: 144 = 120 + 0,3Х -0,3Х = 120 - 144 -0,3Х = - 24 0,3Х = 24 Х = 24 : 0,3 Х = 80 (км\час, первоначальная скорость мотоциклиста). ПРОВЕРКА: 120:80=1,5 (часа) 120:96+0,25=1,5(часа).
1.найдите наибольшее или наименьшее значения квадратного корня
x²-2x+4 -x²+4x +2
2.решите задачу с уравнения
расстояние в 400 км скорый поезд на час быстрее товарного . Какова скорость каждого поезда ,если скорость товарного поезда на 20 км/ч меньше чем скорого?
2) Примем
V1 - скорость скорого поезда, км/час;
V2 - скорость товарного поезда, км/час;
t1 - время в пути скорого поезда, час;
t2 - время в пути товарного поезда, час;
S - путь который товарный и скорый поезда, км
тогда
V1=V2+20
t1=t2-1
V1*t1=V2*t2=400
V1=400/t1
V2=400/t2
V1=400/(t2-1)
400/(t2-1)=(400/t2)+20
400/(t2-1)-(400/t2)-20=0
[400*t2-400*(t2-1)-20*t2*(t2-1)]/[(t2-1)*t2]=0
Чтобы дробь была равна нулю необходимо чтобы числитель был равен нулю:
[400*t2-400*(t2-1)-20*t2*(t2-1)]=0
400*t2-400*t2+400-20*t2^2+20*t2=0
-20*t2^2+20*t2+400=0
20*(-t2^2+*t2+20)=0
-t2^2+*t2+20=0
решаем квадратное уровнение при дискриминанта (см. ссылку)
получаем:
t2(1)=5; t2(2)=-4
нам подходит только первый корень уравнения, т.к. время не может быть величиной отрицательной, т.е. t2=5 час
тогда
t1=5-1=4 час
тогда
V1=400/4=100 км/час
V2=400/5=80 км/час
Проверим
V1=V2+20
100=80+20
100=100
ответ: скорость скорого поезда = 100 км/час, скорость товарного поезда = 80 км/час
t=120:X
Потом он ехал со скоростью 1,2 Х те же 120 км, плюс остановка в пути 15 минут, это 0,25 часа (15:60=0,25).
Можем составить уравнение:
120:Х =120:1,2Х + 0,25
Приводим к общему знаменателю, это 1,2Х , подписываем дополнительные множители, перемножаем и получаем новое уравнение:
144 = 120 + 0,3Х
-0,3Х = 120 - 144
-0,3Х = - 24
0,3Х = 24
Х = 24 : 0,3
Х = 80 (км\час, первоначальная скорость мотоциклиста).
ПРОВЕРКА:
120:80=1,5 (часа)
120:96+0,25=1,5(часа).
1.найдите наибольшее или наименьшее значения квадратного корня
x²-2x+4 -x²+4x +2
2.решите задачу с уравнения
расстояние в 400 км скорый поезд на час быстрее товарного . Какова скорость каждого поезда ,если скорость товарного поезда на 20 км/ч меньше чем скорого?
2) Примем
V1 - скорость скорого поезда, км/час;
V2 - скорость товарного поезда, км/час;
t1 - время в пути скорого поезда, час;
t2 - время в пути товарного поезда, час;
S - путь который товарный и скорый поезда, км
тогда
V1=V2+20
t1=t2-1
V1*t1=V2*t2=400
V1=400/t1
V2=400/t2
V1=400/(t2-1)
400/(t2-1)=(400/t2)+20
400/(t2-1)-(400/t2)-20=0
[400*t2-400*(t2-1)-20*t2*(t2-1)]/[(t2-1)*t2]=0
Чтобы дробь была равна нулю необходимо чтобы числитель был равен нулю:
[400*t2-400*(t2-1)-20*t2*(t2-1)]=0
400*t2-400*t2+400-20*t2^2+20*t2=0
-20*t2^2+20*t2+400=0
20*(-t2^2+*t2+20)=0
-t2^2+*t2+20=0
решаем квадратное уровнение при дискриминанта (см. ссылку)
получаем:
t2(1)=5; t2(2)=-4
нам подходит только первый корень уравнения, т.к. время не может быть величиной отрицательной, т.е. t2=5 час
тогда
t1=5-1=4 час
тогда
V1=400/4=100 км/час
V2=400/5=80 км/час
Проверим
V1=V2+20
100=80+20
100=100
ответ: скорость скорого поезда = 100 км/час, скорость товарного поезда = 80 км/час