Раз прямая является касательной, значит есть точка пересечения, поэтому приравниваем эти два уравнения 28x^2+bx+15=-5x+8 28x^2+(b+5)x+7=0 раз точка касания единственная, значит дескриминант должен равен нулю D=b^2+10b-759 =0 решаем получаем 2 корня b1=-33, b2=23 подставляем в уравнение графика y1=28x^2-33x+15 и y2=28x^2+23x+15
Теперь полученные уравнения касате и графиков опять приравниваем -5х+8=28x^2-33x+15. Корень равен 0.5, т.е абцисса точки касания больше 0
аналогично для второго случая -5х+8=28x^2+23x+15 Решаем, получаем корень -0.5. Это не удовлетворяет, раз абцисса меньше нуля.
28x^2+bx+15=-5x+8
28x^2+(b+5)x+7=0
раз точка касания единственная, значит дескриминант должен равен нулю
D=b^2+10b-759 =0
решаем получаем 2 корня b1=-33, b2=23
подставляем в уравнение графика y1=28x^2-33x+15
и y2=28x^2+23x+15
Теперь полученные уравнения касате и графиков опять приравниваем
-5х+8=28x^2-33x+15. Корень равен 0.5, т.е абцисса точки касания больше 0
аналогично для второго случая
-5х+8=28x^2+23x+15 Решаем, получаем корень -0.5. Это не удовлетворяет, раз абцисса меньше нуля.
Значит ответ в=-33. Конец
прибавим
x²-2xy+y²=1
(x-y)²=1
a)x-y=-1⇒x=y-1
подставим во 2
y²+y²-y-3=0
2y²-y-3=0
D=1+24=25
y1=(1-5)/4=-1⇒x1=-1-1=-2
y2=(1+5)/4=1,5⇒x2=1,5-1=0,5
b)x-y=1⇒x=y+1
подставим во 2
y²+y²+y-3=0
2y²+y-3=0
D=1+24=25
y3=(-1+5)/4=1⇒x3=1+1=2
y4=(-1-5)/4=-1,5⇒x4=-1,5-1=-2,5
(-2;-1);(0,5;1,5);(2;1);(-2,5;-1,5)
2
x-xy+y-1=0
x(1-y)-(1-y)=0
(x-1)(1-y)=0
a)x-1=0
x1=1
подставим во 2
1+y²+2+2y-11=0
y²+2y-8=0
y1+y2=-2 U y1*y2=-8
y1=-4 U y2=2
b)1-y=0
y3=1
подставим во 2
x²+1+2x+2-11=0
x²+2x-8=0
x2+x3=-2 U x2*x3=-8
x2=-4 U x3=2
(1;-4);(1;2);(-4;1);(2;1)