Y(x)=x²+4, х₀=1, k=4 угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀) 1) найдем производную: y'(x)=(x²+4)'=2x k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1 2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е. y'(x₀)=k 2*x₀=4 x₀=2 чтобы найти ординату точки, подставим x₀ в функцию y(x): y₀=y(x₀)=2²+4=4+4=8 (2;4) - координаты точки, в которой угловой коэффициент касания равен k=4 3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀) x₀=1, y'(x₀)=2 - найдено выше под 1) y(x₀)=1²+4=5 подставляем найденные значения в общий вид: f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1
а) Викладемо кулі в ряд. Для визначення розкладу наших куль по шести скриньок розділимо ряд п'ятьма перегородками на шість груп: перша група для першого ящика, друга - для другого і так далі. Таким чином, число варіантів розкладки куль по шухлядах дорівнює числу в розташування п'яти перегородок. Перегородки можуть стояти на будь-якому з 19 місць (між 20 кулями - 19 проміжків). Тому число їх можливих розташувань одно.
б) Розглянемо ряд з 25 предметів: 20 куль і 5 перегородок, розташованих в довільному порядку. Кожен такий ряд однозначно відповідає деякому розкладки куль по ящиках: в перший ящик потрапляють кулі, розташовані лівіше першої перегородки, в другій - розташовані між першою і другою перегородками і т. Д. (Між якимись перегородками куль може і не бути). Тому число в розкладки куль по шухлядах дорівнює числу різних рядів з 20 куль і 5 перегородок, тобто одно
угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀)
1) найдем производную:
y'(x)=(x²+4)'=2x
k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1
2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е.
y'(x₀)=k
2*x₀=4
x₀=2
чтобы найти ординату точки, подставим x₀ в функцию y(x):
y₀=y(x₀)=2²+4=4+4=8
(2;4) - координаты точки, в которой угловой коэффициент касания равен k=4
3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀)
x₀=1, y'(x₀)=2 - найдено выше под 1)
y(x₀)=1²+4=5
подставляем найденные значения в общий вид:
f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1
Объяснение:
Рішення
а) Викладемо кулі в ряд. Для визначення розкладу наших куль по шести скриньок розділимо ряд п'ятьма перегородками на шість груп: перша група для першого ящика, друга - для другого і так далі. Таким чином, число варіантів розкладки куль по шухлядах дорівнює числу в розташування п'яти перегородок. Перегородки можуть стояти на будь-якому з 19 місць (між 20 кулями - 19 проміжків). Тому число їх можливих розташувань одно.
б) Розглянемо ряд з 25 предметів: 20 куль і 5 перегородок, розташованих в довільному порядку. Кожен такий ряд однозначно відповідає деякому розкладки куль по ящиках: в перший ящик потрапляють кулі, розташовані лівіше першої перегородки, в другій - розташовані між першою і другою перегородками і т. Д. (Між якимись перегородками куль може і не бути). Тому число в розкладки куль по шухлядах дорівнює числу різних рядів з 20 куль і 5 перегородок, тобто одно