Формализуем условие задачи. Пусть n солдат расставлены в k полных шеренг, тогда n=10k. Пусть если солдат расставить по 11 человек, в последней шеренге окажется m человек. Тогда n=11(k минус 3) плюс m. Наконец, пусть при расстановке в шеренги по 7 человек в последней будет l человек. Тогда n=7(k плюс 9) плюс l. Cоставим систему и решим её:
система выражений новая строка n=10k, новая строка n=11(k минус 3) плюс m, новая строка n=7(k плюс 9) плюс l, новая строка m меньше 11, новая строка l меньше 7 конец системы . равносильно система выражений k=33 минус m,k= дробь: числитель: 63 плюс l, знаменатель: 3 конец дроби ,m меньше 11, l меньше 7 конец системы . равносильно система выражений \6l плюс 3m=36,m меньше 11, l меньше 7 конец системы .
Есть специальная формула, которая позволяет преобразовать бесконечную периодическую десятичную дробь в обыкновенную:
,
где , a
Рассмотрим пример:
Дана бесконечная периодическая дробь
Итак, по формуле:
целая часть. У нас она равна 2
- количество цифр в периоде. У нас их 2
количество цифр до периода. У нас их 0
все цифры, включая период, в виде натурального числа. У нас это 25
все цифры без периода в виде натурального числа. Их нет.
Итак, получаем:
Подставляем в формулу:
Необходимо отметить, что под подставляется количество 9, а под -количество нулей. У нас , значит пишем две цифры 9, а , значит, нулей не пишем вообще. Между не стоит знак умножения
Формализуем условие задачи. Пусть n солдат расставлены в k полных шеренг, тогда n=10k. Пусть если солдат расставить по 11 человек, в последней шеренге окажется m человек. Тогда n=11(k минус 3) плюс m. Наконец, пусть при расстановке в шеренги по 7 человек в последней будет l человек. Тогда n=7(k плюс 9) плюс l. Cоставим систему и решим её:
система выражений новая строка n=10k, новая строка n=11(k минус 3) плюс m, новая строка n=7(k плюс 9) плюс l, новая строка m меньше 11, новая строка l меньше 7 конец системы . равносильно система выражений k=33 минус m,k= дробь: числитель: 63 плюс l, знаменатель: 3 конец дроби ,m меньше 11, l меньше 7 конец системы . равносильно система выражений \6l плюс 3m=36,m меньше 11, l меньше 7 конец системы .
Объяснение:
лучший ответ
,
где , a
Рассмотрим пример:
Дана бесконечная периодическая дробь
Итак, по формуле:
целая часть. У нас она равна 2
- количество цифр в периоде. У нас их 2
количество цифр до периода. У нас их 0
все цифры, включая период, в виде натурального числа. У нас это 25
все цифры без периода в виде натурального числа. Их нет.
Итак, получаем:
Подставляем в формулу:
Необходимо отметить, что под подставляется количество 9, а под -количество нулей. У нас , значит пишем две цифры 9, а , значит, нулей не пишем вообще. Между не стоит знак умножения
Подставляем:
Подставляем в формулу: