В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
marekatyan
marekatyan
10.01.2022 04:58 •  Алгебра

Решения логарифмических неравенств log1/2x

Показать ответ
Ответ:
ульянаклимова1
ульянаклимова1
24.05.2020 14:18

1. одз: 1) х˃0

        2) 2х+6˃0; х˃-3

      значит  х принадлежит промежутку (0;+).

2. заменим 2 на log1/2(1/2)^2, тогда неравенство примет вид

log 1/2x< log1/2(2x+6)+log1/2(1/2)^2,

log1/2x< log1/2(2x+6)+log1/2(1/4), 

log 1/2x< log1/2[(2х+6)·(1/4)], 

так как основания log равны влевой и вправой части и 1/2 <1,то знак неравенство меняется на противоположный  

х˃(2х+6)·(1/4),раскроем скобки в левой части

х˃1/2х+3/2,

х-1/2х˃3/2,

1/2х˃3/2,

х˃3,     хϵ(3;+∞)

Так как в одз хϵ(0;+∞), то общее решение хϵ(3;+∞)

ответ: хϵ(3;+∞)

 

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота