В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
zalinairina9
zalinairina9
22.01.2020 13:59 •  Алгебра

Реши систему уравнений: {2x−y=10x−5,5y=11

Показать ответ
Ответ:
lisakiss1
lisakiss1
13.05.2020 04:39
В) (x-8)(x²-7x-8)=x³-8x²

заменим что x³-8x²=х²(x-8) поэтому
(x-8)(x²-7x-8)=х²(x-8)
одно решение x=8
сокращаем на  (x-8), остается
x²-7x-8=х²
-7x-8=0
x=-8/7=-1 \frac{1}{7}
ответ: х₁=8 и x_2=-1 \frac{1}{7}

г) (2х + 7)(х² + 12х - 30) - 5х² = 2х²(х + 1)
раскрываем скобки
(2х + 7)(х² + 12х - 30) - 5х²=2x³+24x²-60x+7x²+84x-210-5x²=2x³+26x²+24x-210
аналогично 2х²(х + 1)=2x³+2x²
получаем
2x³+26x²+24x-210=2x³+2x²
2x³+26x²+24x-210-2x³-2x²=0
24x²+24x-210=0
4x²+4x-35=0
D=4²+4*4*35=4²(1+35)=4²6²
√D=4*6=24
x₁=(-4-24)/8=-28/8=-7/2=-3,5
x₂=(-4+24)/8=20/8=5/2=2,5
ответ: x₁=-3,5 и x₂=2,5
0,0(0 оценок)
Ответ:
vkunney
vkunney
24.09.2021 01:41

Чтобы уравнение имело  действительное решение   ,  достаточно чтобы дискриминант был неотрицательным.

D/4 = (a^3-b^3)^2 -(a^2-b^2)*(a^4-b^4)>=0

То  есть ,  необходимо доказать ,  что  при любых a и b справедливо строгое неравенство :

(a^3-b^3)^2>=(a^2-b^2)*(a^4-b^4)

 (a-b)^2*(a^2+ab+b^2)^2>=(a-b)^2* (a+b)^2 * (a^2+b^2)

Заметим ,  что  когда  a=b  , получаем  что  0=0 , то есть условие выполнено.  И  в этом случае уравнение имеет бесконечно много решений.

Теперь,  поскольку  мы разобрали этот случай и  (a-b)^2>=0 , то для случая  a≠b , можно поделить обе части неравентсва на (a-b)^2  не меняя знак неравенства  :

(a^2+ab+b^2)^2>=(a+b)^2*(a^2+b^2)

( a^2+ab+b^2)^2 >= (a^2+2ab+b^2)*(a^2+b^2)

Теперь сделаем слудующий прием , поскольку  (a^2+b^2)^2>0   при a≠b≠0

То можно поделить на это выражение обе части неравенства не меняя его знак :

(  1+ ab/(a^2+b^2)  )^2>= 1+ 2ab/(a^2+b^2)

Тогда можно сделать замену:

ab/(a^2+b^2)=t

(1+t)^2>=1+2t

t^2+2t+1>=1+2t

t^2>=0 (верно)

Таким образом :

(a^3-b^3)^2>=(a^2-b^2)*(a^4-b^4) , то  есть  D>=0.

Вывод :  уравнение  имеет  действительное решение при  любых действительных  а и b.

Что и требовалось доказать.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота