lim((2x²/x²+15x/x²+25/x²)/(x²/x²+15x/x²+50/x²))= x->∞ =lim((2+15/x+25/x²)/(1+15/x+50/x²)=2/1=2 x->∞ величинами 15/x, 25/x², 50/x² можно пренебречь, т.к при x->∞ их значение ->0. они бесконечно малы
Так, так, так. У линейной функции возрастание/убывание зависит от углового коэффицента k : если k>0, функция возрастает, k<0 - убывает. Всё просто. Т.е. в убывании обе функции линейные, k<0 и в первом (k=-7), и во втором . С этим разобрались. Теперь к возрастанию. Я не знаю, в каком Вы классе, постараюсь объяснить доступно. Чтобы определить возрастание/убывание функции, нужно взять значения , два произвольных числа, но . Пусть мы имеем функцию , тогда вычисляем значения функции в этих двух точках, имеем и , так вот, если , тогда функция возрастающая, если же , то она убывающая, но только ПРИ УСЛОВИИ, что она монотонна на всей области определения (т.е. ТОЛЬКО возрастает или ТОЛЬКО убывает), в противном случае мы говорим о ПРОМЕЖУТКАХ возрастания и убывания. 1), т.е. функция возрастающая. А вот задание с не совсем корректно, так как эта функция возрастает только при x>0, при x<0 она убывает, x=0 - Точка экстремума. Если уж брать математический анализ, то легко взять производную и исследовать функцию на "скорость изменения" (алгебраический смысл производной) . Если производная в некоторой точке отрицательная, то функция убывает, если производная положительная, то функция возрастает, если производная равна 0, то это точка экстремума. Очевидно, что при x<0 функция убывает, при x>0 возрастает. Если же доказывать возрастание на промежутке x>0, тогда действуем, как и в первом случае (только не берем значения из ненужного нам промежутка): , функция возрастает, что и требовалось доказать.
x->5
lim((2x²+15x+25)/(x²+15x+50))=(2*(-5)²+15*(-5)+25)/((-5)²+15*(-5)+50)=0/0
x->-5
1. 2x²+15x+25=2*(x+5)*(x+2,5)
2x²+15x+25=0. x₁=-5, x₂=-2,5
2. x²+15+50=(x+50*(x+10)
x²+15x+50=0
x₁=-5, x₂=-10
lim((2x²+15x+25)/(x²+15x+50))=lim((2*(x+5)*(x+2,5)))/((x+5)*(x+10))=
x=->-5 x->-5
=lim(2*(x+2,5)/(x+10))=2*(-5+2,5)/(-5+10)=-5/5=-1
x->-5
lim((2x²+15x+25)/(x²+15x+50))=∞/∞
x->∞
lim((2x²/x²+15x/x²+25/x²)/(x²/x²+15x/x²+50/x²))=
x->∞
=lim((2+15/x+25/x²)/(1+15/x+50/x²)=2/1=2
x->∞
величинами 15/x, 25/x², 50/x² можно пренебречь, т.к при x->∞ их значение ->0. они бесконечно малы