Реши уравнение (относительно x): b^2⋅(x−2)−3b=x+1. ответ (первым в ответе записывай значение параметра b меньшим числом): если b= , то 1)x∈∅ 2)x=3b+1 3)x∈R 4)x=1b−1 5)x=2b+1b−1 если b= , то 1)x∈∅ 2)x=2b+1b−1 3)x=3b+1 4)x=1b−1 5)x∈R если b≠ ;b≠ , то 1)x=1b−1 2)x∈∅ 3)x=3b+1 4)x∈R 5)x=2b+1b−1
√(12-x²-x)/√(x+3).
Подкоренное значение в числителе не может быть меньше нуля, поэтому 12-x²-x≥0, или все равно, что х²+х-12≤0, решается методом интервалов. сначала по теореме, обратной теореме Виета, угадываем корни левой части это - 4 и 3, потом раскладываем левую часть на множители, (х-3)(х+4)≤0, дальше разбиваем числовую ось на интервалы и определяем знак на каждом из них, выбирая для проверки любое число из этого интервала. например, для (-4;3) берем нуль. подставляем в неравенство (0-3)(0+4) минус на плюс дает минус. Знак на остальных интервалах так же определяется. результат ниже на рис.
-43 рис.
+ - +
Решением будет [-4;3]; со знаменателем проще. Там надо решить неравенство линейное, а именно х+3>0; x>-3 неравенство строгое, т.к. делить на нуль нельзя. Ведь мы про знаменатель..
Теперь пересекаем эти два решения, т.е. выбираем общее и получаем ответ. (-3;3]
Чтобы умножить смешанную дробь на натуральное число, мы должны умножить и целую часть и числитель дроби на это число.
При умножении простой дроби на простую дробь, надо:
1) перемножить числители этих дробей и результат записать в числитель
2) перемножить их знаменатели и результат записать в знаменатель
Для умножения смешанных чисел, надо записать их в виде неправильных дробей, а затем воспользоваться правилом умножения простых дробей.