Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
1)c3h6+hoh(н+) =c3h7oh-получение
2c3h7oh+2na=2c3h7ona+h2
ch3-ch2-ch2oh+cuo(t) =ch3-ch2-coh+cu+h2o
2)сh3-ch2-ch2-ch2oh + cuo(t) =ch3-ch2-ch2-coh +cu+h2o-получение
ch3-ch2-ch2-coh+h2=ch3-ch2-ch2-ch2oh
ch3-ch2-ch2-coh+ag2o(t) = ch3-ch2-ch2-cooh+2ag
3)2ch3-(ch2)3-cooh+2na=2ch3-(ch2)3-coona+h2
2ch3-(ch2)3-cooh+mgo=(ch3-ch2-ch2-ch2-coo)2mg+h2o
ch3-(ch2)3-cooh+naoh=ch3-(ch2)3-coona+h2o
2ch3-(ch2)3-cooh+na2co3=2ch3-(ch2)3-coona+co2+h2o
4)c2h5oh+ch3-cooh= c2h5-o-co-ch3+h2o
c5h11oh+h-cooh= c5h11-o-co-h +h2o
c7h13oh+c2h5-cooh= c7h13-o-co-c2h5+h2o
c5h11oh+ c5h11-cooh=c5h11-o-co-c5h11+ h2o
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.