1) Верно. У пар-грамма смежные углы в сумме равны 180, поэтому внешний угол при одном угле равен второму углу. 2) √2 ~ 1,414, 2 + 1,414 = 3,414 < 3,5 - неверно. Сумма двух любых сторон треугольника должна быть больше третьей стороны. 3) Площадь круга S(кр) = pi*D^2/4 ~ 0,785*D^2 Квадрат, вписанный в круг, имеет диагональ, равную диаметру. d = D, сторона квадрата a = d/√2 = D/√2 Площадь квадрата S(кв) = a^2 = D^2/2 Отношение S(кв)/S(кр) = (D^2/2)/(0,785*D^2) = 1/(2*0.785) ~ 0,63 Нет, неверно. 4) Верно. Этот треугольник - прямоугольный, по т. Пифагора 2 + 6 = 8 При этом √8 = 2*√2, то есть катет равен половине гипотенузы. Значит, этот катет находится против угла 30 градусов.
В решении.
Объяснение:
√52 - 10√27 - √52 - 10√27;
1) Нужно разложить первое подкоренное выражение на квадрат разности.
10√27 = 2 * 5 * √27 (удвоенное произведение первого числа на второе).
Значит, первое число = 5, второе √27.
Преобразованное выражение под корнем:
√25 - 10√27 + 27 = √(5 - √27)² = |5 - √27| = √27 - 5.
Квадрат первого числа - удвоенное произведение первого числа на второе + квадрат второго числа.
Так как √27 больше 5, то |5 - √27| = -(5 - √27) = √27 - 5.
2) Разложить второе подкоренное выражение на квадрат суммы:
10√27 = 2 * 5 * √27 (удвоенное произведение первого числа на второе).
Значит, первое число = 5, второе √27.
Преобразованное выражение под корнем:
√25 + 10√27 + 27 = √(5 + √27)² = |5 + √27| = 5 + √27.
Квадрат первого числа + удвоенное произведение первого числа на второе + квадрат второго числа.
Так как сумма в модуле положительная, то |5 + √27| = 5 + √27.
3) Вычитание:
√27 - 5 - (5 + √27) = √27 - 5 - 5 - √27 = -10. ответ примера.
2) √2 ~ 1,414, 2 + 1,414 = 3,414 < 3,5 - неверно. Сумма двух любых сторон треугольника должна быть больше третьей стороны.
3) Площадь круга S(кр) = pi*D^2/4 ~ 0,785*D^2
Квадрат, вписанный в круг, имеет диагональ, равную диаметру.
d = D, сторона квадрата a = d/√2 = D/√2
Площадь квадрата S(кв) = a^2 = D^2/2
Отношение S(кв)/S(кр) = (D^2/2)/(0,785*D^2) = 1/(2*0.785) ~ 0,63
Нет, неверно.
4) Верно. Этот треугольник - прямоугольный, по т. Пифагора
2 + 6 = 8
При этом √8 = 2*√2, то есть катет равен половине гипотенузы.
Значит, этот катет находится против угла 30 градусов.