ответ:
объяснение:
интуиция мне подсказывает, что требуетс это:
1/(6а-4b) - 1/(6a+4b) + 3a/(9a^2 - 4b^2)
т. к.
6a-4b = 2*(3a-2b)
6a+4b = 2*(3a+2b)
9a^2 - 4b^2 = (3a-2b)(3a+2b) - разность квадратов
то общим знаменателем дроби будет 2(3a-2b)(3a+2b)
в числителе дроби будет:
2(3a+2b) + 2(3a-2b) + 2*3a = 6a + 4b + 6a - 4b + 6a = 18a
дробь окончательно:
18a/2(3a-2b)(3a+2b) = 9a/(9a^2 - 4b^2)
9а
9a^2 - 4b^2
9*3^х+12*3^х=21;
21*3^х=212; 3^х=21:21=1;
3^х=3^0; х=0;
3) log2 x+ log (2^2) x + log (2^3) x= 6;
log2 x+1/2log2 x+1/3log2 x=6;
log2 x+ log2 x^1/2+ log2 x^1/3=6;
log2 (x*x^1/2*x^1/3)= log2 2^6;
x^(6/6+3/6+2/6)=2^6;
x^(11/6)=2^6; возведем в 6/11 степень;
х=2^36/11; (бред какой-то, но я все верно решала
2) найдём одз: подкоренные выражения должны быть больше либо равны 0;
15-х>=0, х<=15; 3-х>=0; х<=3;
х€(-бесконечность; 3];
возведем в квадрат;
((15-х)+2((15-х)(3-х))^1/2+(3-х))=36;
(18-2х+2((45-3х-15х+х^2))^1/2=36; делим на 2;
(45-18х+х^2)^1/2=18-9+х; возведем в квадрат;
45-18х+х^2= 81+18х+х^2;
36х=-81+45; 36х=-36;
х=-1.
ответ:
объяснение:
интуиция мне подсказывает, что требуетс это:
1/(6а-4b) - 1/(6a+4b) + 3a/(9a^2 - 4b^2)
т. к.
6a-4b = 2*(3a-2b)
6a+4b = 2*(3a+2b)
9a^2 - 4b^2 = (3a-2b)(3a+2b) - разность квадратов
то общим знаменателем дроби будет 2(3a-2b)(3a+2b)
в числителе дроби будет:
2(3a+2b) + 2(3a-2b) + 2*3a = 6a + 4b + 6a - 4b + 6a = 18a
дробь окончательно:
18a/2(3a-2b)(3a+2b) = 9a/(9a^2 - 4b^2)
ответ:
9а
9a^2 - 4b^2