Первый корень подбираем как делитель свободного члена 81. Это могут быть числа При х=1 многочлен, стоящий в правой части равенства обращается в 0, поэтому х=1 - корень уравнения. Делим многочлен 4 степени на разность (х-1), должны получить многочлен 3 степени и в остатке 0. х^4-10x³+90x-81 | x-1 -(x^4-x³) | ---------------- ------------------ x³-9x²-9x+81 -9x³+90x-81 -(-9x³+9x²) ---------------------- -9x²+90x-81 -(9x²+9x) ------------------ 81x-8x 81x-81 ------------ 0 Можно записать разложение на множители многочлена 4 степени: x^4-10x³+90x-81=(x-1)(x³-9x²-9x+81) Теперь или опять подберём корень или разложим на множители многочлен 3 степени: x³-9x²-9x+81= x²·(x-9)-9·(x-9)=(x-9)(x²-9)=(x-9)(x-3)(x+3) Теперь запишем: x^4-10x³+90x-81=(x-1)(x-9)(x-3)(x+3)=0 x=1, x=9 , x=3 , x=-3.
1.Выполните действия:
а)(2у+1/4(дробь))^2=4y^2+y+1/16
б)(-7х-1)^2=49x^2+14x+1
в)(а^2-2b)^2=a^4-4a^2b+4b^2
г) (8x+x^3)^2=64x^2+48x+x^6
2.Представьте трехчлен двумя в виде квадрата двучлена:
а)100х^2+1-20x=(10x-1)^2=(10x-1)(10x-1)
б) x^4+4y^2+4x^2y=(x^2+2y)^2=( x^2+2y)( x^2+2y)
3.Раскройте скобки:
а)(3а-b)^2-(3a+b)^2=9a^2-6ab+b^2-9a^2-6ab-b^2=-12ab
б) (a+(b-c))^2=(a+(b-c))(a-(b-c))=(a+b-c)(a-b+c)
1простите выражения:
а) (5a+0,2)(0,2-5а)=0,04 - 25a^2
б)(-6а-2b(6а-2b)=-(6a+2b)(6a-2b)=-(36a^2-4b^2)= -36a^2+4b^2
в) (b^2+4)(b-2)(b+2)= (b^2+4)(b^2-4)=b^4-16
2.Разложите на множетели:
а)-а^4+16=-( а^4-16)=-(a^2-4)(a^2+4)
б)64x^2-(x-1)^2=(8x-(x-1))(8x+(x-1))=( 8x-x+1)(8x+x-1)=(7x+1)(9x-1)
в) (3x-3)^2-(x+2)^2=(3x-3-x-2)( 3x-3+x+2)=(2x-5)(4x-1)
3.Решите уравнения:
а)(2x-1)^2-4(x-2)(x+2)=0
4x^2-4x+1-4x^2+16=0
-4x+17=0
-4x=-17
x=17/4
x=4 целых 1/4
б) 1|4(дробь)x^2=0,16
1/4x^2-0,16=0
(1/2x-0,4)(1/2+0,4)=0
1/2x-0,4=0 1/2+0,4=0
1/2x=0,4 1/2x=-0,4
x=0,8 x=-0,8
4.Представьте в виде произведения:
а)8x^3+0,064у^3=(2x+0,4y)(4x^2-0,8xy+0,16y^2)
б)х^6-64=(x^2-4)(x^4+4x^2+16)
При х=1 многочлен, стоящий в правой части равенства обращается в 0, поэтому х=1 - корень уравнения. Делим многочлен 4 степени на разность (х-1), должны получить многочлен 3 степени и в остатке 0.
х^4-10x³+90x-81 | x-1
-(x^4-x³) | ----------------
------------------ x³-9x²-9x+81
-9x³+90x-81
-(-9x³+9x²)
----------------------
-9x²+90x-81
-(9x²+9x)
------------------
81x-8x
81x-81
------------
0
Можно записать разложение на множители многочлена 4 степени:
x^4-10x³+90x-81=(x-1)(x³-9x²-9x+81)
Теперь или опять подберём корень или разложим на множители многочлен 3 степени:
x³-9x²-9x+81= x²·(x-9)-9·(x-9)=(x-9)(x²-9)=(x-9)(x-3)(x+3)
Теперь запишем:
x^4-10x³+90x-81=(x-1)(x-9)(x-3)(x+3)=0
x=1, x=9 , x=3 , x=-3.