решить две задачи !
задача 1:Поезд должен был проехать 480 км. Проехав 512 этого расстояния, поезд
увеличил скорость на 8 км/ч. Найдите скорость поезда на каждом участке
движения, если весь на весь путь было затрачено 6 518 часа.
задача 2: Скорость первого мотоциклиста на 15 км/ч больше скорости второго
мотоциклиста, поэтому путь 130 км он проезжает на 26 минут быстрее
второго. Найдите скорость каждого мотоциклиста.
Если х-5>0, то
(х-5)*(х+3)
2Раскрываем скобки
х^2+3х-5х-15
Упрощаем, получается
х^2-2х-15.
Это все был первый случай, когда выражение под модулем больше нуля, теперь раскроем модуль так, если выражение под ним отрицательное
1. Раскрываем модуль.
Если х-5<0, то
(-х+5)*(х+3)
2. Раскрываем скобки.
-х^2-3х+5х+15
Упрощаем, получается
-х^2+2х+15.
Все. Первое задание сделано.
Аналогично решаются остальные задания. Просто нужно помнить правило раскрытия модуля.
Если все-таки не понятно, или имеются затруднения - обращайтесь, постараюсь
Объяснение:
у = sin(x)
Область определения: D(f) = (-∞; +∞) или D(f)∈RОбласть значения: E(f) = [-1; 1]Нули функций: x₀ = πn, n∈ZЧетность функций: sin(-x) = -sin(x) - нечетнаяПериод функций: sin(x+T) = sin(x) ⇒ T = 2πПромежутки монотонности:y = sin(x)↑ на [-π/2 + 2πn; π/2 + 2πn], n∈Z
y = sin(x)↓ на [π/2 + 2πn; 3π/2 + 2πn], n∈Z
Промежутки знакомо постоянства:y>0 при x∈(0 + 2πn; π + 2πn), n∈Z
y<0 при x∈(π + 2πn; 2π + 2πn), n∈Z
Наибольшее и наименьшее:y = 1 - наибольшее при x = π/2 + 2πn,n∈Z;
y = -1 - наименьшее при x = − π/2 + 2πn,n∈Z;
Обратимость: y = arcsin(x) на [- π/2; π/2]Ограниченность: Ограничена сверху и снизуПроизводная: y = (sin(x))' = cos(x)График: (показано внизу)↓