50 км/ч.
Объяснение:
300 : 3 = 100 (км) - проехал поезд до остановки.
300 - 100 = 200 (км) - проехал поезд после остановки.
Пусть х км/ч - скорость поезда до остановки,
тогда (х - 10) км/ч - скорость поезда после остановки.
Составим уравнение:
100(x - 10) + 200х + х(х - 10) =8х(х - 10)
100х - 1000 + 200х + х² - 10х = 8х² - 80х
8х² - х² + 10х - 80х - 100х - 200х + 1000 = 0
7х² - 370х + 1000 = 0
D = (- 370)² - 4 * 7 * 1000 = 136900 - 28000 = 108900 = 330²
Второй корень не подходит, так как имея такую скорость, поезд не смог бы её сбросить на 10 км/ч.
Значит, скорость поезда до остановки была 50 км/ч.
4(x^2 + 7x + 6)*(x^2 + 5x + 6) = -3x^2
Замена x^2 + 6x + 6 = t
4(t + x)(t - x) = -3x^2
4(t^2 - x^2) = -3x^2
4t^2 - 4x^2 + 3x^2 = 0
4t^2 - x^2 = 0
(2t - x)(2t + x) = 0
Обратная замена
(2x^2 + 12x + 12 - x)(2x^2 + 12x + 12 + x) = 0
(2x^2 + 11x + 12)(2x^2 + 13x + 12) = 0
Разложили на 2 квадратных. Решаем их отдельно.
1) 2x^2 + 11x + 12 = 0
D = 11^2 - 4*2*12 = 121 - 96 = 25 = 5^2
x1 = (-11 - 5)/4 = -16/4 = -4
x2 = (-11 + 5)/4 = -6/4 = -1,5
2) 2x^2 + 13x + 12 = 0
D = 13^2 - 4*2*12 = 169 - 96 = 73
x3 = (-13 - √73)/4
x4 = (-13 + √73)/4
50 км/ч.
Объяснение:
300 : 3 = 100 (км) - проехал поезд до остановки.
300 - 100 = 200 (км) - проехал поезд после остановки.
Пусть х км/ч - скорость поезда до остановки,
тогда (х - 10) км/ч - скорость поезда после остановки.
Составим уравнение:
100(x - 10) + 200х + х(х - 10) =8х(х - 10)
100х - 1000 + 200х + х² - 10х = 8х² - 80х
8х² - х² + 10х - 80х - 100х - 200х + 1000 = 0
7х² - 370х + 1000 = 0
D = (- 370)² - 4 * 7 * 1000 = 136900 - 28000 = 108900 = 330²
Второй корень не подходит, так как имея такую скорость, поезд не смог бы её сбросить на 10 км/ч.
Значит, скорость поезда до остановки была 50 км/ч.