Возьмем за x- скорость 2 туриста. Тогда скорость первого будет x+2. Напишем время, за которое они добрались. время первого 40/(х+2) время второго 40/х
Из условия ясно, что первый доехал быстрее, чем второй, значит мы можем записать уравнение:
- = 1 приводим к общему знаменателю:
= 1 Заметим, что x не равен 0, икс не равен -2. По свойству пропорций мы приходим к такому уравнению: 80=x^2+2x x^2+2x-80=0 По формуле четного корня находим дискриминант: D=p^2-ac=1+80=81; Корень из D=9 x1=-1-9=-10 (скорость не может быть отрицательной, поэтому посторонний корень) x2=-1+9=8 Итак, скорость второго туриста 8+2=10. ответ: скорость первого туриста 10 км/ч; скорость второго туриста 8км/ч
Напишем время, за которое они добрались.
время первого 40/(х+2)
время второго 40/х
Из условия ясно, что первый доехал быстрее, чем второй, значит мы можем записать уравнение:
- = 1
приводим к общему знаменателю:
= 1
Заметим, что x не равен 0, икс не равен -2.
По свойству пропорций мы приходим к такому уравнению:
80=x^2+2x
x^2+2x-80=0
По формуле четного корня находим дискриминант:
D=p^2-ac=1+80=81; Корень из D=9
x1=-1-9=-10 (скорость не может быть отрицательной, поэтому посторонний корень)
x2=-1+9=8
Итак, скорость второго туриста 8+2=10.
ответ: скорость первого туриста 10 км/ч; скорость второго туриста 8км/ч
ответ: 30 часов.
Объяснение:
Производительность двух труб равна 1/12 части резервуара за час
Пусть время наполнения первой трубы равно х часов.
Тогда время наполнения 2 трубы равно х +10 часов. соответственно их производительности равны 1/х и 1/х+10 часть/ час.
Совместная производительность равна
1/х + 1/(х +10) = 1/12;
12(х+10) + 12х = х(х+10);
12х +120 +12х =х²+10х;
х² - 24х+10х -120 =0;
х² -14х-120=0;
х1= 20; х2= -6 - не соответствует условию
х=20 часов заполняет 1 труба.
х+10=20+10=30 часов - время заполнения 2-й трубой.
Проверим:
1/20 + 1/30 = (3+2)/60 = 5/60 = 1/12. Всё верно!