Решить контрольную 1.знайдіть гіпотенузу прямокутного трикутника з катетами 2см 2 см. а) 4 см ; б) 4 см ; в) 8см ; г) 16 см. 2.у трикутнику abc a = 90°, b = 30°, ав = 6 см. знайдіть інші сторони трикутника. а) 4 см, 2см; б) 12 см, 6см; в) 8см, 6 см; г) 3 см, 3 см. 3. у трикутнику abc c = 90°, ас = 3 см, вс = 18см. знайдіть tgа. а) ; б) 6; в) 9; г) . 4. катети прямокутного трикутника дорівнюють 3см і 4см.знайти радіус описаного кола. а) 3см б) 3,5см в) 2,5см г) 5см д) 7см. 5. у прямокутному трикутнику один із катетів дорівнює 8см, а синус протилежного кута – 0,2. знайти гіпотенузу а) 0,4см ; б) 1,6см; в) 8,2см; г) 40см . іі частина ( по 2 за завдання). 6. медіана прямокутного трикутника, проведена до гіпотенузи, дорівнює 5 см, а відстань від основи медіани до одного з катетів — 3 см. знайдіть периметр трикутника. 7. розв'яжіть прямокутний трикутник з гіпотенузою 6 см і гострим кутом 30°. ііі частина (3 ) 8. основи рівнобічної трапеції дорівнюють 16см і 8см, а висота – 5см. знайти діагональ трапеції.
Высоты треугольника пересекаются в одной точке.
Следовательно, достаточно найти уравнения двух любых высот треугольника и точку их пересечения, решив систему двух уравнений.
Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противолежащую сторону.
Значит надо найти уравнение стороны треугольника и уравнение прямой, проходящей через противоположную вершину, перпендикулярно этой стороне.
Уравнение прямой АВ найдем по формуле:
(X-Xa)/(Xb-Xa)=(Y-Ya)/(Yb-Ya). Или
(X+4)/2=(Y-0)/-2 - каноническое уравнение =>
y=-x-2 - уравнение прямой с угловым коэффициентом k=-1.
Условие перпендикулярности прямых: k1=-1/k => k1=1.
Тогда уравнение перпендикуляра к стороне АВ из вершины С
найдем по формуле:
Y-Yс=k1(X-Xс) или Y-2=X-2 =>
y=х (1) - это уравнение перпендикуляра СС1.
Уравнение прямой АС:
(X-Xa)/(Xс-Xa)=(Y-Ya)/(Yс-Yа). Или
(X+4)/6=(Y-0)/2 - каноническое уравнение =>
y=(1/3)x+4/3 - уравнение прямой с угловым коэффициентом k=1/3.
Условие перпендикулярности прямых: k1=-1/k => k1 = -3.
Тогда уравнение перпендикуляра к стороне АС из вершины В
найдем по формуле:
Y-Yb=k1(X-Xb) или Y+2=-3(X+2) =>
y=-3х-8 (2)- это уравнение перпендикуляра BB1.
Точка пересечения перпендикуляров имеет координаты:
х=-3х - 8 (подставили (1) в (2)) => х = -2.
Тогда y = -2.
ответ: точка пересечения высот совпадает с вершиной В(-2;-2)
треугольника, то есть треугольник прямоугольный с <B=90°.
Для проверки найдем длины сторон треугольника:
АВ=√(((-2-(-4))²+(-2)²) = 2√2.
ВС=√(((2-(-2))²+(2-(-2))²) = 4√2.
АС=√(((2-(-4))²+2²) = 2√10.
АВ²+ВС² = 40; АС² = 40.
По Пифагору АВ²+ВС² = АС² - треугольник прямоугольный.
Объяснение:
Объяснение:
Сөйлем мүшелері – сөздердің мағыналық тұрғыдан өзара тіркесуі нәтижесінде синтаксистік қызметте жұмсалатын сөйлемнің дербес бөлшектері. Сөйлемдегі сөздер бір-бірімен мағыналық байланыста болады, сол байланыс негізінде грамматикалық мағынаға ие болған сөздер, сөз тіркестері сөйлем мүшелері қызметін атқарады. Сөйлем мүшелері қызметінде сөйлемнің дұрыс құрылуының, әр сөздің өз орнында жұмсалуы мен ой желісі, стильдік жағынан нақты болуының орны ерекше. Сөйлем мүшелері үлкен екі топқа бөлінеді:
тұрлаулы мүшелер (бастауыш, баяндауыш);
тұрлаусыз мүшелер (анықтауыш, толықтауыш, пысықтауыш).
Тұрлаулы мүшелер сөйлемнің негізгі арқауы саналады, предикативтік қатынас негізінде ең кіші сөйлем ретінде жұмсалып, олардың негізінде тақырып, рема, тіпті есімді, етістікті сөз тіркестері айқындалады.[1]