В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
frost79naumenkow6nt4
frost79naumenkow6nt4
20.03.2021 13:51 •  Алгебра

Решить неравенство f`(x) > = 0, если f(x) = -1/2x^2 - 3x + 5

Показать ответ
Ответ:
Александр756
Александр756
18.08.2020 09:19

Решение
Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁  до пересечения с этой прямой в точке T.
 Из равенства треугольников  А₁BT и  A А₁C  (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана,
∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников 
AML  и  MBT (по двум углам: ∠MAL = ∠BTА₁,
∠ALB = ∠LBT — накрест лежащие при параллельных
прямых AC, BT и секущих BL,  AT) следует,
что AL : BT = AL : AC = AM : MT. Так как  АА₁ = А₁T,
то AM : MT = 1 : 7.
Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.

решение во вкладыше 

0,0(0 оценок)
Ответ:
ЯЯЯЯМаша
ЯЯЯЯМаша
22.03.2020 17:32
Ну, я буду писать высказывание словами, а потом математически, думаю, это будет тебе полезно и понять.
Итак, дано: квадрат любого числа есть число положительное. Запишем это математически (скобки для наглядности):
\forall x \ (x^2\ \textgreater \ 0).

Отрицание первым раскрытие квантора. Существует число, квадрат которого неположителен. Математически:
! \left[ \forall x \ (x^2\ \textgreater \ 0)\right] \Leftrightarrow \exists x \ (x^2 \leq 0).

Отрицание вторым я не знаю, как построить, важно, что приводит это к одному и тому же высказыванию в конце концов.
Ну, а истинность установить однозначно нельзя. Если рассматривать это высказывание на множестве натуральных чисел, то оно истинно. Квадрат любого натурального числа положителен, потому что произведение двух положительных чисел положительно.
А если, например, над целыми числами - то оно ложно. Контрпример: x = 0. Квадрат такого числа не является числом положительным.
Если же рассматривать это высказывание над комплексными числами, найдутся и другие контрпримеры, например, x=i
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота