х (км/ч) - скорость 2-го лыжника
у (ч) - время 2-го лыжника
х+3 (км/ч) - скорость 1-го лыжника
у-2 (ч) - время 1-го лыжника
1) ху=180 путь 1-го лыжника
2) (х+3)(у-2)=180 - путь 2-го лыжника
3) ху=(х+3)(у-2)
ху=ху-2х+3у-6
ху-ху+2х-3у+6=0
2х-3у+6=0
4) Т.к. ху=180
у=180/х, подставив значение х, получим
2х-3*(180/х)+6=0
2х- 540/х +6 =0, умножим обе части ур-я на х
2х^2 +6х -540 =0
х^2 +3х - 270 = 0
D=1089
х=15 км/ч - скорость 2-го лыжника
15+3=18 км/ч - скорость 1-го лыжника
ответ: 18 км/ч
Войти
АнонимМатематика21 августа 15:52
Во сколько раз увеличится периметр квадрата и во сколько раз увеличится его площадь, если каждую сторону увеличить в
3 раза?
Соотношение параметров квадрата
Приведём формулы периметра Р и площади S квадрата через длину стороны а.
периметр квадрата Р равен учетверённому размеру его стороны а: Р = 4 * а;
площадь квадрата S равна квадрату его стороны а: S = a²;
периметр и площадь квадрата связаны между собой. так как в их формулах общий параметр - сторона квадрата: S = P² / 16.
Для понятного объяснения задачи увеличим по заданию его сторону в 3 раза.Тогда новая сторона квадрата станет а1 = 3 * а.
Вычисление увеличения периметра и площади квадрата
Чтобы узнать, как при этом изменились периметр и площадь квадрата, подставим в формулы Р и S вместо "а" новое значение стороны "а1". Тогда:
Р1 = 4 * а1 = 4 * (3 * а ) = 12 * а;
S1 = а1² = (3 * а)² = 9 * а².
После того, как выразили новый периметр Р1 и площадь S1 через начальное значение стороны "а", можно ответить на вопрос задания:
для вычислений используем написанные выше формулы для площади S и периметра P;
чтобы узнать, во сколько раз увеличится периметр квадрата, нужно разделить Р1 на Р;
чтобы узнать, во сколько раз увеличится площадь квадрата, нужно разделить S1 на S.
Согласно выше сказанного, ответим на вопросы задания:
во сколько раз увеличился периметр квадрата, для чего разделим (Р1 : Р) = (12 * а) : (4 * а) = 3 (раза);
во сколько раз увеличится площадь квадрата, для чего разделим (S1 : S) = (9 * а²) : (а²) = 9 (раз).
заметим, что если периметр квадрата увеличился в 3 раза, как и сторона квадрата, то площадь, увеличивается в (3)² = 9 раз.
ответ: периметр увеличится в 3 раза, площадь увеличится в 9 раз.
х (км/ч) - скорость 2-го лыжника
у (ч) - время 2-го лыжника
х+3 (км/ч) - скорость 1-го лыжника
у-2 (ч) - время 1-го лыжника
1) ху=180 путь 1-го лыжника
2) (х+3)(у-2)=180 - путь 2-го лыжника
3) ху=(х+3)(у-2)
ху=ху-2х+3у-6
ху-ху+2х-3у+6=0
2х-3у+6=0
4) Т.к. ху=180
у=180/х, подставив значение х, получим
2х-3*(180/х)+6=0
2х- 540/х +6 =0, умножим обе части ур-я на х
2х^2 +6х -540 =0
х^2 +3х - 270 = 0
D=1089
х=15 км/ч - скорость 2-го лыжника
15+3=18 км/ч - скорость 1-го лыжника
ответ: 18 км/ч
Войти
АнонимМатематика21 августа 15:52
Во сколько раз увеличится периметр квадрата и во сколько раз увеличится его площадь, если каждую сторону увеличить в
3 раза?
Соотношение параметров квадрата
Приведём формулы периметра Р и площади S квадрата через длину стороны а.
периметр квадрата Р равен учетверённому размеру его стороны а: Р = 4 * а;
площадь квадрата S равна квадрату его стороны а: S = a²;
периметр и площадь квадрата связаны между собой. так как в их формулах общий параметр - сторона квадрата: S = P² / 16.
Для понятного объяснения задачи увеличим по заданию его сторону в 3 раза.Тогда новая сторона квадрата станет а1 = 3 * а.
Вычисление увеличения периметра и площади квадрата
Чтобы узнать, как при этом изменились периметр и площадь квадрата, подставим в формулы Р и S вместо "а" новое значение стороны "а1". Тогда:
Р1 = 4 * а1 = 4 * (3 * а ) = 12 * а;
S1 = а1² = (3 * а)² = 9 * а².
После того, как выразили новый периметр Р1 и площадь S1 через начальное значение стороны "а", можно ответить на вопрос задания:
для вычислений используем написанные выше формулы для площади S и периметра P;
чтобы узнать, во сколько раз увеличится периметр квадрата, нужно разделить Р1 на Р;
чтобы узнать, во сколько раз увеличится площадь квадрата, нужно разделить S1 на S.
Согласно выше сказанного, ответим на вопросы задания:
во сколько раз увеличился периметр квадрата, для чего разделим (Р1 : Р) = (12 * а) : (4 * а) = 3 (раза);
во сколько раз увеличится площадь квадрата, для чего разделим (S1 : S) = (9 * а²) : (а²) = 9 (раз).
заметим, что если периметр квадрата увеличился в 3 раза, как и сторона квадрата, то площадь, увеличивается в (3)² = 9 раз.
ответ: периметр увеличится в 3 раза, площадь увеличится в 9 раз.