Объяснение:
Пусть 1 -я труба заполняет бассейн за х часов, тогда 2-я труба заполнит за (х+5) часов.
За 1 час первая труба заполнит 1/х часть трубы, а за 6 часов 6/х часть трубы.
За 1 час вторая труба заполнит 1/(х+5) часть трубы, а за 6 часов 6/(х+5) часть трубы.
Составим и решим уравнение
6/х+6/(х+5)=1 х>0
6(х+5)+6х=х(х+5)
6х+30+6х=х²+5х
х²-7х-30=0
По теореме, обратной теореме Виета х1=-3; х2=10
х1=-3 - не подходит так как х>0
1 -я труба заполняет бассейн за 10 часов, тогда 2-я труба заполнит за 10+5 =15часов.
ответ:1 -я труба за 10 часов; 2-я труба заполнит за 15 часов.
Объяснение:
Пусть 1 -я труба заполняет бассейн за х часов, тогда 2-я труба заполнит за (х+5) часов.
За 1 час первая труба заполнит 1/х часть трубы, а за 6 часов 6/х часть трубы.
За 1 час вторая труба заполнит 1/(х+5) часть трубы, а за 6 часов 6/(х+5) часть трубы.
Составим и решим уравнение
6/х+6/(х+5)=1 х>0
6(х+5)+6х=х(х+5)
6х+30+6х=х²+5х
х²-7х-30=0
По теореме, обратной теореме Виета х1=-3; х2=10
х1=-3 - не подходит так как х>0
1 -я труба заполняет бассейн за 10 часов, тогда 2-я труба заполнит за 10+5 =15часов.
ответ:1 -я труба за 10 часов; 2-я труба заполнит за 15 часов.
Строим гиперболу и затем верхнюю часть графика отобразить в нижнюю(отрицательную часть)
Область определения:
Подставим у=кх в упрощенную функцию.
(*)
Очевидно, что при k=0 уравнение (*) решений не будет иметь.
1) Если x>0, то и это уравнение решений не имеет при k>0(так как левая часть всегда положительно).
2) Если x<0, то и при k<0 это уравнение решений не имеет.
Если объединить 1) и 2) случаи, то уравнение будет иметь хотя бы один корень.
Подставим теперь , имеем
Итак, при k=0 и k=±6.25 графики не будут иметь общих точек