Число 59 по условию это число равно: 5х+4=6у+5 5х-6у=5-4 5х-6у=1 5х=6у+1 5х - это число,делящееся на 5, кроме того за минусом 1, делящееся на 6 Подбираем числа делящиеся на 5: 15=14+1, не подходит, т. к.14 не делится на 6 25=24+1, вроде подходит, 24 делится на 6. Делаем проверку далее по условию. 25+4=29. Если это задуманное число, то при делении на 3, дает в остатке2. Верно. Далее, при делении на 4 дает в остатке 3. Неверно. 30=29+1 - нет 35=34+1 - нет 40= 39+1- нет 45= 44+1 - нет 50= 49+1 - нет 55=54+1 - да. Тогда задуманное число 55+4=59. 59 при делении на 2 дает в остатке 1, при делении на 3 дает в остатке 2, при делении на 4 дает в остатке 3. Значит, оно.
Пусть событие А₁ - "выбран первый кубик (обычный)"
Пусть событие А₂ - "выбран второй кубик (нестандартный)"
Пусть событие В - "выпало сочетание {3; 5} при двукратном бросании кубика"
Поскольку нас интересует вероятность, связанная со вторым кубиком, то распишем вероятность события А₂В двумя :
Из этого равенства выразим вероятность того, что брошен был второй кубик, при условии выпадения нужного сочетания:
Знаменатель можно расписать по формуле полной вероятности:
Собственно говоря, записана формула Байеса.
Выбор каждого из кубиков равновероятен:
Вероятность выпадения каждого из имеющихся чисел на первом кубике (от 1 до 6):
Найдем вероятность выпадения на первом кубике сочетания {3; 5}, учитывая, что этой ситуации соответствует два элементарных исхода (3; 5) и (5; 3):
Вероятность выпадения каждого из имеющихся чисел на втором кубике (1, 3, 5):
Найдем вероятность выпадения на втором кубике сочетания {3; 5}:
Подставим все значения:
ответ: 0.8
по условию это число равно:
5х+4=6у+5
5х-6у=5-4
5х-6у=1
5х=6у+1
5х - это число,делящееся на 5, кроме того за минусом 1, делящееся на 6
Подбираем числа делящиеся на 5:
15=14+1, не подходит, т. к.14 не делится на 6
25=24+1, вроде подходит, 24 делится на 6. Делаем проверку далее по условию. 25+4=29. Если это задуманное число, то при делении на 3, дает в остатке2. Верно. Далее, при делении на 4 дает в остатке 3. Неверно.
30=29+1 - нет
35=34+1 - нет
40= 39+1- нет
45= 44+1 - нет
50= 49+1 - нет
55=54+1 - да.
Тогда задуманное число 55+4=59.
59 при делении на 2 дает в остатке 1, при делении на 3 дает в остатке 2, при делении на 4 дает в остатке 3. Значит, оно.