В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
mishakkkk
mishakkkk
12.04.2023 20:45 •  Алгебра

решить системные уравнения замены

Показать ответ
Ответ:
29101975tanuxa
29101975tanuxa
03.01.2020 20:01

а) Попробуем составить такую последовательность a₁, a₂, a₃..., чтобы сумма элементов была минимальна. Тогда a₁ = 1. a₂ либо 7a₁, либо a₁ + 5, но, так как a₁ + 5 < 7a₁, a₂ = a₁ + 5 = 6. Отсюда a₃ = a₂ - 5 = 1, a₄ = 6 и т. д. Тогда S = 68 * 1 + 67 * 6 = 470 > 420. Так как минимальная сумма 135 элементов больше 420, такого быть не может.

б) Да. Например, последовательность 100, 105, 110, 105. S = 100 + 105 + 110 + 105 = 420, каждый её член отличается от предыдущего на 5.

в) Пусть количество членов n = 2. Тогда при a₁ = x a₂ = x + 5 или a₂ = 7x. В первом случае x + x + 5 = 420 ⇔ 2x = 415 ⇒ x = a₁ ∉ N, т. к. слева чётное число, а справа нечётное. Во втором случае x + 7x = 420 ⇔ 8x = 420 ⇔ x = 52,5 ⇒ x = a₁ ∉ N. Значит, n ≠ 2.

Пусть n = 3. Такая последовательность существует, например, 135, 140, 145. S = 135 + 140 + 145 = 420, каждый её член отличается от предыдущего на 5.

ответ: а) нет; б) да; в) 3

0,0(0 оценок)
Ответ:
Abdueva
Abdueva
07.09.2020 01:42

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота