Пусть х см - больший катет, тогда у см - меньший катет. Известно, что х на 3 см больше у. Гипотенуза равна 15 см. Составим систему уравнений по условию задачи.
Пусть x км/ч — скорость второго автомобиля, тогда (x + 10) км/ч — скорость первого автомобиля. Они встретились через 3 часа. За это время второй автомобиль проехал 3x км, а первый автомобиль — 3(x + 10) км. Используя эти данные и условия задачи, составим уравнение и решим его:
3(x + 10) + 3x = 450,
3x + 30 + 3x = 450,
6x = 450 - 30,
6x = 420,
x = 420 / 6,
x = 70 км/ч.
Мы нашли скорость второго автомобиля. Теперь найдем скорость второго автомобиля:
70 + 10 = 80 км/ч.
ответ: скорость первого автомобиля равна 80 км/ч, скорость второго автомобиля — 70 км/ч.
Квадрат гипотенузы равен сумме квадратов катетов.
(a + b)² = a² + 2ab + b² - формула
Пусть х см - больший катет, тогда у см - меньший катет. Известно, что х на 3 см больше у. Гипотенуза равна 15 см. Составим систему уравнений по условию задачи.
{х² + у² = 15²
{х = (у + 3)
- - - - - - - - - - - - -
(у + 3)² + у² = 15²
у² + 6у + 9 + у² = 225
2у² + 6у - 216 = 0
Сократим обе части уравнения на 2
у² + 3у - 108 = 0
D = b² - 4ac = 3² - 4 · 1 · (-108) = 9 + 432 = 441
√D = √441 = 21
у₁ = (-3-21)/(2·1) = -24/2 = -12 (не подходит, так как < 0)
у₂ = (-3+21)/(2·1) = 18/2 = 9
х = у + 3 = 9 + 3 = 12
ответ: 12 см и 9 см.
Проверка:
12² + 9² = 15²
144 + 81 = 225
225 = 225 - верно.
Пусть x км/ч — скорость второго автомобиля, тогда (x + 10) км/ч — скорость первого автомобиля. Они встретились через 3 часа. За это время второй автомобиль проехал 3x км, а первый автомобиль — 3(x + 10) км. Используя эти данные и условия задачи, составим уравнение и решим его:
3(x + 10) + 3x = 450,
3x + 30 + 3x = 450,
6x = 450 - 30,
6x = 420,
x = 420 / 6,
x = 70 км/ч.
Мы нашли скорость второго автомобиля. Теперь найдем скорость второго автомобиля:
70 + 10 = 80 км/ч.
ответ: скорость первого автомобиля равна 80 км/ч, скорость второго автомобиля — 70 км/ч.
Объяснение: