1) У числа n три различных простых делителя.
У числа 11n тоже три делителя.
Значит, один из делителей числа n равен 11.
n = 11 · х · у
2) У числа 6n ровно 4 различных простых делителя.
Учитывая, что 6 = 2 · 3
получаем:
6n = 11 · 2 · у · 3
По условию все простые делители должны быть различными.
Значит, у ≠ 2
у ≠ 3
у ≠ 11
С учетом этого наименьшим из множества простых чисел будет
число 5.
Получаем у = 5
Наименьшее число 6n = 2 · 3 · 5 · 11 = 330
3) У числа n обязательно будут делители 5 и 11, а из делителей 2 и 3 выбираем наименьший делитель 2 и получаем:
n = 2 · 5 · 11 = 110
1 + 1 + 0 = 2 - это и есть сумма цифр наименьшего числа n = 110.
ответ: 2
A2. Найдите значение выражения 2 – tg2x · cos2 x,если sin х = 0,2
1) 1,2 2) 1,96 3) 1,04 4) 1,6
А3. У выражение sin2α ·cos4α - sin6α + sin4α · cos2α
1) sin2α - sin6α 2) -2sin6α 3) 0 4)cos2α – sin6α
А4. Найдите значение выражения √2 · sin22,5 ۫ · cos22,5 ۫
1) 1 2) √2 3) √2/2 4) 0,5
А5. У выражение sin(α – β) + 2 cosα · sinβ
1) cos(α + β) 2) cos(α – β) 3) sin(α + β) 4) sin(α – β)
Объяснение найти правильный ответ
1) У числа n три различных простых делителя.
У числа 11n тоже три делителя.
Значит, один из делителей числа n равен 11.
n = 11 · х · у
2) У числа 6n ровно 4 различных простых делителя.
Учитывая, что 6 = 2 · 3
получаем:
6n = 11 · 2 · у · 3
По условию все простые делители должны быть различными.
Значит, у ≠ 2
у ≠ 3
у ≠ 11
С учетом этого наименьшим из множества простых чисел будет
число 5.
Получаем у = 5
Наименьшее число 6n = 2 · 3 · 5 · 11 = 330
3) У числа n обязательно будут делители 5 и 11, а из делителей 2 и 3 выбираем наименьший делитель 2 и получаем:
n = 2 · 5 · 11 = 110
1 + 1 + 0 = 2 - это и есть сумма цифр наименьшего числа n = 110.
ответ: 2
A2. Найдите значение выражения 2 – tg2x · cos2 x,если sin х = 0,2
1) 1,2 2) 1,96 3) 1,04 4) 1,6
А3. У выражение sin2α ·cos4α - sin6α + sin4α · cos2α
1) sin2α - sin6α 2) -2sin6α 3) 0 4)cos2α – sin6α
А4. Найдите значение выражения √2 · sin22,5 ۫ · cos22,5 ۫
1) 1 2) √2 3) √2/2 4) 0,5
А5. У выражение sin(α – β) + 2 cosα · sinβ
1) cos(α + β) 2) cos(α – β) 3) sin(α + β) 4) sin(α – β)
Объяснение найти правильный ответ
A2. Найдите значение выражения 2 – tg2x · cos2 x,если sin х = 0,2
1) 1,2 2) 1,96 3) 1,04 4) 1,6
А3. У выражение sin2α ·cos4α - sin6α + sin4α · cos2α
1) sin2α - sin6α 2) -2sin6α 3) 0 4)cos2α – sin6α
А4. Найдите значение выражения √2 · sin22,5 ۫ · cos22,5 ۫
1) 1 2) √2 3) √2/2 4) 0,5
А5. У выражение sin(α – β) + 2 cosα · sinβ
1) cos(α + β) 2) cos(α – β) 3) sin(α + β) 4) sin(α – β)