У разных геометрических фигур с произвольными параметрами (задать самостоятельно) рассчитать вероятность нахождения одной точки фигуры ближе к одной из сторон фигуры (на Ваш выбор). Чертёж обязательно
Panzerkampfwagen VIII «Maus» (Maus — «Мышь», иное название — Porsche Typ 205 или Pzkpfw.VIII Maus) — сверхтяжёлый танк, спроектированный в Третьем рейхе в период с 1942 по 1945 годы под руководством Фердинанда Порше. Является самым крупным по массе танком из всех, когда-либо воплощённых в металле (боевая масса — 182 тонны). Было построено всего два экземпляра машины. В боевых действиях не участвовали. На данный момент в мире сохранился только один танк «Маус», собранный из частей обоих экземпляров, в Бронетанковом музее в Кубинке[5
Первое задание:
1)3х^2 - х^3.
2•3х-3х^2
6х-3х^2
2) 4х^2+6х+3
2•4х+6
8х+6
3) Есть два решения:
(3х^2+1)(3х^2-1).
Расписываем по формуле умножения:
(3х^2+1)’(3х^2-1)+(3х^2+1)(3х^2-1)’
Берём производную:
(2•3х)(3х^2-1)+(3х^2+1)(2•3х)
(6х)(3х^2-1)+(3х^2+1)(6х)
(18х^3 - 6х)+(18х^3 + 6х)
18х^3-6х+18х^3+6х
18х^3+18х^3
36х^3
Второй вариант - изначально увидеть формулу умножения и упростить. Но ответ одинаковый.
4) Очень не удобно через телефон, ибо деление. Если никто не решит - скажешь отправлю фотку решения.
Второе задание:
у = 1-6х^3
у’ = -3•6х^2
у’= -18х^2
у’(х0) = -18•8^2 = -1152
Третье задание:
s(t) = 2,5t^2+1,5t
s(t)’ = V(t)
s(t)’ = 2•2,5t+1,5
s(t)’ = 5t+1,5
V(t)=5t+1,5
V(4)=5•4+1,5=21,5.
ответ: 21,5.
Четвёртое задание так же по формуле деления, с телефона не удобно, по этому если никто не решит - напишешь
Объяснение:
Panzerkampfwagen VIII «Maus» (Maus — «Мышь», иное название — Porsche Typ 205 или Pzkpfw.VIII Maus) — сверхтяжёлый танк, спроектированный в Третьем рейхе в период с 1942 по 1945 годы под руководством Фердинанда Порше. Является самым крупным по массе танком из всех, когда-либо воплощённых в металле (боевая масса — 182 тонны). Было построено всего два экземпляра машины. В боевых действиях не участвовали. На данный момент в мире сохранился только один танк «Маус», собранный из частей обоих экземпляров, в Бронетанковом музее в Кубинке[5