В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Сашуля12345
Сашуля12345
18.05.2021 02:41 •  Алгебра

Решить уравнение 6cos^2x-5sinx+1=0 если можно то подробное решение за решение 30 пунктов

Показать ответ
Ответ:
goodboiclick
goodboiclick
27.05.2020 03:21
Из основного тригонометрического тождества \sin^2x+\cos^2x=1, выразим \cos^2x, т.е. \cos^2x=1-\sin^2x. Подставив в исходное уравнение, получим 6(1-\sin^2 x)-5\sin x+1=0.. После раскрытия скобки и упрощений, получим -6\sin^2x-5\sin x+7=0.Для удобства умножим обе части уравнения на (-1), т.е. будем иметь следующее уравнение 6\sin^2x+5\sin x-7=0

Пусть \sin x=t, при условии, что |t| \leq 1, получим 6t^2+5t-7=0
D=b^2-4ac=5^2-4\cdot6\cdot(-7)=193
t_{1,2}= \dfrac{-b\pm \sqrt{D} }{2a} = \dfrac{-5\pm \sqrt{193} }{12}
Корень t=\dfrac{-5- \sqrt{193} }{12} не удовлетворяет условию при |t| \leq 1

Обратная замена.
  \sin x=\dfrac{-5+ \sqrt{193} }{12} \\ \\ \boxed{x=(-1)^k\cdot \arcsin\bigg(\dfrac{-5+ \sqrt{193} }{12} \bigg)+ \pi k,k \in \mathbb{Z}}

ответ: (-1)^k\cdot \arcsin\bigg(\dfrac{-5+ \sqrt{193} }{12} \bigg)+ \pi k, где k - целые числа.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота